On 28.05.2018 00:54, Stefan Agner wrote:
> Add support for the NAND flash controller found on NVIDIA
> Tegra 2 SoCs. This implementation does not make use of the
> command queue feature. Regular operations/data transfers are
> done in PIO mode. Page read/writes with hardware ECC make
> use of the DMA for data transfer.
> 
> Signed-off-by: Lucas Stach <d...@lynxeye.de>
> Signed-off-by: Stefan Agner <ste...@agner.ch>
> ---
>  MAINTAINERS                       |   7 +
>  drivers/mtd/nand/raw/Kconfig      |   6 +
>  drivers/mtd/nand/raw/Makefile     |   1 +
>  drivers/mtd/nand/raw/tegra_nand.c | 999 ++++++++++++++++++++++++++++++
>  4 files changed, 1013 insertions(+)
>  create mode 100644 drivers/mtd/nand/raw/tegra_nand.c
> 
> diff --git a/MAINTAINERS b/MAINTAINERS
> index 58b9861ccf99..8cbbb7111742 100644
> --- a/MAINTAINERS
> +++ b/MAINTAINERS
> @@ -13844,6 +13844,13 @@ M:   Laxman Dewangan <ldewan...@nvidia.com>
>  S:   Supported
>  F:   drivers/input/keyboard/tegra-kbc.c
>  
> +TEGRA NAND DRIVER
> +M:   Stefan Agner <ste...@agner.ch>
> +M:   Lucas Stach <d...@lynxeye.de>
> +S:   Maintained
> +F:   Documentation/devicetree/bindings/mtd/nvidia,tegra20-nand.txt
> +F:   drivers/mtd/nand/raw/tegra_nand.c
> +
>  TEGRA PWM DRIVER
>  M:   Thierry Reding <thierry.red...@gmail.com>
>  S:   Supported
> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
> index 19a2b283fbbe..012c63c6ab47 100644
> --- a/drivers/mtd/nand/raw/Kconfig
> +++ b/drivers/mtd/nand/raw/Kconfig
> @@ -534,4 +534,10 @@ config MTD_NAND_MTK
>         Enables support for NAND controller on MTK SoCs.
>         This controller is found on mt27xx, mt81xx, mt65xx SoCs.
>  
> +config MTD_NAND_TEGRA
> +     tristate "Support for NAND on NVIDIA Tegra"
> +     depends on ARCH_TEGRA || COMPILE_TEST
> +     help
> +       Enables support for NAND flash on NVIDIA Tegra SoC based boards.
> +
>  endif # MTD_NAND
> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
> index 165b7ef9e9a1..d5a5f9832b88 100644
> --- a/drivers/mtd/nand/raw/Makefile
> +++ b/drivers/mtd/nand/raw/Makefile
> @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_HISI504)              += 
> hisi504_nand.o
>  obj-$(CONFIG_MTD_NAND_BRCMNAND)              += brcmnand/
>  obj-$(CONFIG_MTD_NAND_QCOM)          += qcom_nandc.o
>  obj-$(CONFIG_MTD_NAND_MTK)           += mtk_ecc.o mtk_nand.o
> +obj-$(CONFIG_MTD_NAND_TEGRA)         += tegra_nand.o
>  
>  nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
>  nand-objs += nand_amd.o
> diff --git a/drivers/mtd/nand/raw/tegra_nand.c 
> b/drivers/mtd/nand/raw/tegra_nand.c
> new file mode 100644
> index 000000000000..1a0833d97472
> --- /dev/null
> +++ b/drivers/mtd/nand/raw/tegra_nand.c
> @@ -0,0 +1,999 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * Copyright (C) 2018 Stefan Agner <ste...@agner.ch>
> + * Copyright (C) 2014-2015 Lucas Stach <d...@lynxeye.de>
> + * Copyright (C) 2012 Avionic Design GmbH
> + */
> +
> +#include <linux/clk.h>
> +#include <linux/completion.h>
> +#include <linux/delay.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/err.h>
> +#include <linux/gpio/consumer.h>
> +#include <linux/interrupt.h>
> +#include <linux/io.h>
> +#include <linux/module.h>
> +#include <linux/mtd/partitions.h>
> +#include <linux/mtd/rawnand.h>
> +#include <linux/of.h>
> +#include <linux/platform_device.h>
> +#include <linux/reset.h>
> +
> +#define CMD                                  0x00
> +#define   CMD_GO                             (1 << 31)
> +#define   CMD_CLE                            (1 << 30)
> +#define   CMD_ALE                            (1 << 29)
> +#define   CMD_PIO                            (1 << 28)
> +#define   CMD_TX                             (1 << 27)
> +#define   CMD_RX                             (1 << 26)
> +#define   CMD_SEC_CMD                                (1 << 25)
> +#define   CMD_AFT_DAT                                (1 << 24)
> +#define   CMD_TRANS_SIZE(x)                  (((x - 1) & 0xf) << 20)
> +#define   CMD_A_VALID                                (1 << 19)
> +#define   CMD_B_VALID                                (1 << 18)
> +#define   CMD_RD_STATUS_CHK                  (1 << 17)
> +#define   CMD_RBSY_CHK                               (1 << 16)
> +#define   CMD_CE(x)                          (1 << (8 + ((x) & 0x7)))
> +#define   CMD_CLE_SIZE(x)                    (((x - 1) & 0x3) << 4)
> +#define   CMD_ALE_SIZE(x)                    (((x - 1) & 0xf) << 0)
> +
> +#define STATUS                                       0x04
> +
> +#define ISR                                  0x08
> +#define   ISR_CORRFAIL_ERR                   (1 << 24)
> +#define   ISR_UND                            (1 << 7)
> +#define   ISR_OVR                            (1 << 6)
> +#define   ISR_CMD_DONE                               (1 << 5)
> +#define   ISR_ECC_ERR                                (1 << 4)
> +
> +#define IER                                  0x0c
> +#define   IER_ERR_TRIG_VAL(x)                        (((x) & 0xf) << 16)
> +#define   IER_UND                            (1 << 7)
> +#define   IER_OVR                            (1 << 6)
> +#define   IER_CMD_DONE                               (1 << 5)
> +#define   IER_ECC_ERR                                (1 << 4)
> +#define   IER_GIE                            (1 << 0)
> +
> +#define CFG                                  0x10
> +#define   CFG_HW_ECC                         (1 << 31)
> +#define   CFG_ECC_SEL                                (1 << 30)
> +#define   CFG_ERR_COR                                (1 << 29)
> +#define   CFG_PIPE_EN                                (1 << 28)
> +#define   CFG_TVAL_4                         (0 << 24)
> +#define   CFG_TVAL_6                         (1 << 24)
> +#define   CFG_TVAL_8                         (2 << 24)
> +#define   CFG_SKIP_SPARE                     (1 << 23)
> +#define   CFG_BUS_WIDTH_8                    (0 << 21)
> +#define   CFG_BUS_WIDTH_16                   (1 << 21)
> +#define   CFG_COM_BSY                                (1 << 20)
> +#define   CFG_PS_256                         (0 << 16)
> +#define   CFG_PS_512                         (1 << 16)
> +#define   CFG_PS_1024                                (2 << 16)
> +#define   CFG_PS_2048                                (3 << 16)
> +#define   CFG_PS_4096                                (4 << 16)
> +#define   CFG_SKIP_SPARE_SIZE_4                      (0 << 14)
> +#define   CFG_SKIP_SPARE_SIZE_8                      (1 << 14)
> +#define   CFG_SKIP_SPARE_SIZE_12             (2 << 14)
> +#define   CFG_SKIP_SPARE_SIZE_16             (3 << 14)
> +#define   CFG_TAG_BYTE_SIZE(x)                       ((x) & 0xff)
> +
> +#define TIMING_1                             0x14
> +#define   TIMING_TRP_RESP(x)                 (((x) & 0xf) << 28)
> +#define   TIMING_TWB(x)                              (((x) & 0xf) << 24)
> +#define   TIMING_TCR_TAR_TRR(x)                      (((x) & 0xf) << 20)
> +#define   TIMING_TWHR(x)                     (((x) & 0xf) << 16)
> +#define   TIMING_TCS(x)                              (((x) & 0x3) << 14)
> +#define   TIMING_TWH(x)                              (((x) & 0x3) << 12)
> +#define   TIMING_TWP(x)                              (((x) & 0xf) <<  8)
> +#define   TIMING_TRH(x)                              (((x) & 0xf) <<  4)
> +#define   TIMING_TRP(x)                              (((x) & 0xf) <<  0)
> +
> +#define RESP                                 0x18
> +
> +#define TIMING_2                             0x1c
> +#define   TIMING_TADL(x)                     ((x) & 0xf)
> +
> +#define CMD_1                                        0x20
> +#define CMD_2                                        0x24
> +#define ADDR_1                                       0x28
> +#define ADDR_2                                       0x2c
> +
> +#define DMA_CTRL                             0x30
> +#define   DMA_CTRL_GO                                (1 << 31)
> +#define   DMA_CTRL_IN                                (0 << 30)
> +#define   DMA_CTRL_OUT                               (1 << 30)
> +#define   DMA_CTRL_PERF_EN                   (1 << 29)
> +#define   DMA_CTRL_IE_DONE                   (1 << 28)
> +#define   DMA_CTRL_REUSE                     (1 << 27)
> +#define   DMA_CTRL_BURST_1                   (2 << 24)
> +#define   DMA_CTRL_BURST_4                   (3 << 24)
> +#define   DMA_CTRL_BURST_8                   (4 << 24)
> +#define   DMA_CTRL_BURST_16                  (5 << 24)
> +#define   DMA_CTRL_IS_DONE                   (1 << 20)
> +#define   DMA_CTRL_EN_A                              (1 <<  2)
> +#define   DMA_CTRL_EN_B                              (1 <<  1)
> +
> +#define DMA_CFG_A                            0x34
> +#define DMA_CFG_B                            0x38
> +
> +#define FIFO_CTRL                            0x3c
> +#define   FIFO_CTRL_CLR_ALL                  (1 << 3)
> +
> +#define DATA_PTR                             0x40
> +#define TAG_PTR                                      0x44
> +#define ECC_PTR                                      0x48
> +
> +#define DEC_STATUS                           0x4c
> +#define   DEC_STATUS_A_ECC_FAIL                      (1 << 1)
> +#define   DEC_STATUS_ERR_COUNT_MASK          0x00ff0000
> +#define   DEC_STATUS_ERR_COUNT_SHIFT         16
> +
> +#define HWSTATUS_CMD                         0x50
> +#define HWSTATUS_MASK                                0x54
> +#define   HWSTATUS_RDSTATUS_MASK(x)          (((x) & 0xff) << 24)
> +#define   HWSTATUS_RDSTATUS_VALUE(x)         (((x) & 0xff) << 16)
> +#define   HWSTATUS_RBSY_MASK(x)                      (((x) & 0xff) << 8)
> +#define   HWSTATUS_RBSY_VALUE(x)             (((x) & 0xff) << 0)
> +
> +#define BCH_CONFIG                           0xcc
> +#define   BCH_ENABLE                         (1 << 0)
> +#define   BCH_TVAL_4                         (0 << 4)
> +#define   BCH_TVAL_8                         (1 << 4)
> +#define   BCH_TVAL_14                                (2 << 4)
> +#define   BCH_TVAL_16                                (3 << 4)
> +
> +#define DEC_STAT_RESULT                              0xd0
> +#define DEC_STAT_BUF                         0xd4
> +#define   DEC_STAT_BUF_FAIL_SEC_FLAG_MASK    0xff000000
> +#define   DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT   24
> +#define   DEC_STAT_BUF_CORR_SEC_FLAG_MASK    0x00ff0000
> +#define   DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT   16
> +#define   DEC_STAT_BUF_MAX_CORR_CNT_MASK     0x00001f00
> +#define   DEC_STAT_BUF_MAX_CORR_CNT_SHIFT    8
> +
> +#define SKIP_SPARE_BYTES     4
> +#define BITS_PER_STEP_RS     18
> +#define BITS_PER_STEP_BCH    13
> +
> +struct tegra_nand_controller {
> +     struct nand_hw_control controller;
> +     void __iomem *regs;
> +     struct clk *clk;
> +     struct device *dev;
> +     struct completion command_complete;
> +     struct completion dma_complete;
> +     bool last_read_error;
> +     int cur_chip;
> +     struct nand_chip *chip;
> +};
> +
> +struct tegra_nand_chip {
> +     struct nand_chip chip;
> +     struct gpio_desc *wp_gpio;
> +};
> +
> +static inline struct tegra_nand_controller *to_tegra_ctrl(
> +                                             struct nand_hw_control *hw_ctrl)
> +{
> +     return container_of(hw_ctrl, struct tegra_nand_controller, controller);
> +}
> +
> +static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
> +                                    struct mtd_oob_region *oobregion)
> +{
> +     struct nand_chip *chip = mtd_to_nand(mtd);
> +     int bytes_per_step = (BITS_PER_STEP_RS * chip->ecc.strength) / 8;
> +
> +     if (section > 0)
> +             return -ERANGE;
> +
> +     oobregion->offset = SKIP_SPARE_BYTES;
> +     oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
> +
> +     return 0;
> +}
> +
> +static int tegra_nand_ooblayout_rs_free(struct mtd_info *mtd, int section,
> +                                     struct mtd_oob_region *oobregion)
> +{
> +     struct nand_chip *chip = mtd_to_nand(mtd);
> +     int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * 
> chip->ecc.strength, 8);
> +
> +     if (section > 0)
> +             return -ERANGE;
> +
> +     oobregion->offset = SKIP_SPARE_BYTES +
> +                         round_up(bytes_per_step * chip->ecc.steps, 4);
> +     oobregion->length = mtd->oobsize - oobregion->offset;
> +
> +     return 0;
> +}
> +
> +static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
> +     .ecc = tegra_nand_ooblayout_rs_ecc,
> +     .free = tegra_nand_ooblayout_rs_free,
> +};
> +
> +static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
> +                                    struct mtd_oob_region *oobregion)
> +{
> +     struct nand_chip *chip = mtd_to_nand(mtd);
> +     int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * 
> chip->ecc.strength, 8);
> +
> +     if (section > 0)
> +             return -ERANGE;
> +
> +     oobregion->offset = SKIP_SPARE_BYTES;
> +     oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
> +
> +     return 0;
> +}
> +
> +static int tegra_nand_ooblayout_bch_free(struct mtd_info *mtd, int section,
> +                                     struct mtd_oob_region *oobregion)
> +{
> +     struct nand_chip *chip = mtd_to_nand(mtd);
> +     int bytes_per_step = (BITS_PER_STEP_BCH * chip->ecc.strength) / 8;
> +
> +     if (section > 0)
> +             return -ERANGE;
> +
> +     oobregion->offset = SKIP_SPARE_BYTES +
> +                         round_up(bytes_per_step * chip->ecc.steps, 4);
> +     oobregion->length = mtd->oobsize - oobregion->offset;
> +
> +     return 0;
> +}
> +
> +/*
> + * Layout with tag bytes is
> + *
> + * --------------------------------------------------------------------------
> + * | main area                       | skip bytes | tag bytes | parity | .. |
> + * --------------------------------------------------------------------------
> + *
> + * If not tag bytes are written, parity moves right after skip bytes!
> + */
> +static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
> +     .ecc = tegra_nand_ooblayout_bch_ecc,
> +     .free = tegra_nand_ooblayout_bch_free,
> +};
> +
> +static irqreturn_t tegra_nand_irq(int irq, void *data)
> +{
> +     struct tegra_nand_controller *ctrl = data;
> +     u32 isr, dma;
> +
> +     isr = readl_relaxed(ctrl->regs + ISR);
> +     dma = readl_relaxed(ctrl->regs + DMA_CTRL);
> +     dev_dbg(ctrl->dev, "isr %08x\n", isr);
> +
> +     if (!isr && !(dma & DMA_CTRL_IS_DONE))
> +             return IRQ_NONE;
> +
> +     if (isr & ISR_CORRFAIL_ERR)
> +             ctrl->last_read_error = true;
> +
> +     if (isr & ISR_CMD_DONE)
> +             complete(&ctrl->command_complete);
> +
> +     if (isr & ISR_UND)
> +             dev_dbg(ctrl->dev, "FIFO underrun\n");
> +
> +     if (isr & ISR_OVR)
> +             dev_dbg(ctrl->dev, "FIFO overrun\n");
> +
> +     /* handle DMA interrupts */
> +     if (dma & DMA_CTRL_IS_DONE) {
> +             writel(dma, ctrl->regs + DMA_CTRL);
> +             complete(&ctrl->dma_complete);
> +     }
> +
> +     /* clear interrupts */
> +     writel(isr, ctrl->regs + ISR);
> +
> +     return IRQ_HANDLED;
> +}
> +
> +static int tegra_nand_cmd(struct nand_chip *chip,
> +                      const struct nand_subop *subop)
> +{
> +     const struct nand_op_instr *instr;
> +     const struct nand_op_instr *instr_data_in = NULL;
> +     struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
> +     unsigned int op_id = -1, trfr_in_sz = 0, trfr_out_sz = 0, offset = 0;
> +     bool first_cmd = true;
> +     u32 cmd = 0;
> +     u32 value;
> +
> +     for (op_id = 0; op_id < subop->ninstrs; op_id++) {
> +             unsigned int naddrs, i;
> +             const u8 *addrs;
> +             u32 addr1 = 0, addr2 = 0;
> +
> +             instr = &subop->instrs[op_id];
> +
> +             switch (instr->type) {
> +             case NAND_OP_CMD_INSTR:
> +                     if (first_cmd) {
> +                             cmd |= CMD_CLE;
> +                             writel(instr->ctx.cmd.opcode, ctrl->regs + 
> CMD_1);
> +                     } else {
> +                             cmd |= CMD_SEC_CMD;
> +                             writel(instr->ctx.cmd.opcode, ctrl->regs + 
> CMD_2);
> +                     }
> +                     first_cmd = false;
> +                     break;
> +             case NAND_OP_ADDR_INSTR:
> +                     offset = nand_subop_get_addr_start_off(subop, op_id);
> +                     naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
> +                     addrs = &instr->ctx.addr.addrs[offset];
> +
> +                     cmd |= CMD_ALE | CMD_ALE_SIZE(naddrs);
> +                     for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
> +                             addr1 |= *addrs++ << (8 * i);
> +                     naddrs -= i;
> +                     for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
> +                             addr2 |= *addrs++ << (8 * i);
> +                     writel(addr1, ctrl->regs + ADDR_1);
> +                     writel(addr2, ctrl->regs + ADDR_2);
> +                     break;
> +
> +             case NAND_OP_DATA_IN_INSTR:
> +                     trfr_in_sz = nand_subop_get_data_len(subop, op_id);
> +                     offset = nand_subop_get_data_start_off(subop, op_id);
> +
> +                     cmd |= CMD_TRANS_SIZE(trfr_in_sz) | CMD_PIO | CMD_RX | 
> CMD_A_VALID;
> +
> +                     instr_data_in = instr;
> +                     break;
> +
> +             case NAND_OP_DATA_OUT_INSTR:
> +                     trfr_out_sz = nand_subop_get_data_len(subop, op_id);
> +                     offset = nand_subop_get_data_start_off(subop, op_id);
> +                     trfr_out_sz = min_t(size_t, trfr_out_sz, 4);
> +
> +                     cmd |= CMD_TRANS_SIZE(trfr_out_sz) | CMD_PIO | CMD_TX | 
> CMD_A_VALID;
> +
> +                     memcpy(&value, instr->ctx.data.buf.out + offset, 
> trfr_out_sz);
> +                     writel(value, ctrl->regs + RESP);
> +
> +                     break;
> +             case NAND_OP_WAITRDY_INSTR:
> +                     cmd |= CMD_RBSY_CHK;
> +                     break;
> +
> +             }
> +     }
> +
> +
> +     cmd |= CMD_GO | CMD_CE(ctrl->cur_chip);
> +     writel(cmd, ctrl->regs + CMD);
> +     wait_for_completion(&ctrl->command_complete);

Could this and other completions stuck forever? What about
wait_for_completion_timeout() + HW reset / re-init on timeout?

> +
> +     if (instr_data_in) {
> +             u32 value;
> +             size_t n = min_t(size_t, trfr_in_sz, 4);
> +
> +             value = readl(ctrl->regs + RESP);
> +             memcpy(instr_data_in->ctx.data.buf.in + offset, &value, n);
> +     }
> +
> +     return 0;
> +}
> +
> +static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
> +     NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
> +             NAND_OP_PARSER_PAT_CMD_ELEM(true),
> +             NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
> +             NAND_OP_PARSER_PAT_CMD_ELEM(true),
> +             NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
> +     NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
> +             NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
> +     NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
> +             NAND_OP_PARSER_PAT_CMD_ELEM(true),
> +             NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
> +             NAND_OP_PARSER_PAT_CMD_ELEM(true),
> +             NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
> +             NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
> +     );
> +
> +static int tegra_nand_exec_op(struct nand_chip *chip,
> +                          const struct nand_operation *op,
> +                          bool check_only)
> +{
> +     return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
> +                                   check_only);
> +}
> +static void tegra_nand_select_chip(struct mtd_info *mtd, int chip_nr)
> +{
> +     struct nand_chip *chip = mtd_to_nand(mtd);
> +     struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
> +
> +     ctrl->cur_chip = chip_nr;
> +}
> +
> +static u32 tegra_nand_fill_address(struct tegra_nand_controller *ctrl,
> +                                struct nand_chip *chip, int page)
> +{
> +     /* Lower 16-bits are column, always 0 */
> +     writel(page << 16, ctrl->regs + ADDR_1);
> +
> +     if (chip->options & NAND_ROW_ADDR_3) {
> +             writel(page >> 16, ctrl->regs + ADDR_2);
> +             return 5;
> +     }
> +
> +     return 4;
> +}
> +
> +static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
> +                           struct nand_chip *chip, bool enable)
> +{
> +     u32 value;
> +
> +     switch (chip->ecc.algo) {
> +     case NAND_ECC_RS:
> +             value = readl(ctrl->regs + CFG);
> +             if (enable)
> +                     value |= CFG_HW_ECC | CFG_ERR_COR;
> +             else
> +                     value &= ~(CFG_HW_ECC | CFG_ERR_COR);
> +             writel(value, ctrl->regs + CFG);
> +             break;
> +     case NAND_ECC_BCH:
> +             value = readl(ctrl->regs + BCH_CONFIG);
> +             if (enable)
> +                     value |= BCH_ENABLE;
> +             else
> +                     value &= ~BCH_ENABLE;
> +             writel(value, ctrl->regs + BCH_CONFIG);
> +             break;
> +     default:
> +             dev_err(ctrl->dev, "Unsupported hardware ECC algorithm\n");
> +             break;
> +     }
> +}
> +
> +static int tegra_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
> +                             uint8_t *buf, int oob_required, int page)
> +{
> +     struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
> +     dma_addr_t dma_addr;
> +     u32 value, addrs;
> +     int ret, dma_len;
> +
> +     writel(NAND_CMD_READ0, ctrl->regs + CMD_1);
> +     writel(NAND_CMD_READSTART, ctrl->regs + CMD_2);
> +
> +     addrs = tegra_nand_fill_address(ctrl, chip, page);
> +
> +     dma_len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
> +     dma_addr = dma_map_single(ctrl->dev, buf, dma_len, DMA_FROM_DEVICE);
> +     ret = dma_mapping_error(ctrl->dev, dma_addr);
> +     if (ret) {
> +             dev_err(ctrl->dev, "dma mapping error\n");
> +             return -EINVAL;
> +     }
> +
> +     writel(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
> +     writel(dma_addr, ctrl->regs + DATA_PTR);
> +
> +     if (oob_required) {
> +             struct mtd_oob_region oobregion;
> +             dma_addr_t dma_addr_oob = dma_addr + mtd->writesize;
> +
> +             mtd_ooblayout_free(mtd, 0, &oobregion);
> +
> +             writel(oobregion.length - 1, ctrl->regs + DMA_CFG_B);
> +             writel(dma_addr_oob + oobregion.offset, ctrl->regs + TAG_PTR);
> +     } else {
> +             writel(0, ctrl->regs + DMA_CFG_B);
> +             writel(0, ctrl->regs + TAG_PTR);
> +     }
> +
> +     value = DMA_CTRL_GO | DMA_CTRL_IN | DMA_CTRL_PERF_EN |
> +             DMA_CTRL_REUSE | DMA_CTRL_IE_DONE | DMA_CTRL_IS_DONE |
> +             DMA_CTRL_BURST_16 | DMA_CTRL_EN_A;
> +     if (oob_required)
> +             value |= DMA_CTRL_EN_B;
> +     writel(value, ctrl->regs + DMA_CTRL);
> +
> +     value = CMD_CLE | CMD_ALE | CMD_ALE_SIZE(addrs) | CMD_SEC_CMD |
> +             CMD_RBSY_CHK | CMD_GO | CMD_RX | CMD_TRANS_SIZE(9) |
> +             CMD_A_VALID | CMD_CE(ctrl->cur_chip);
> +     if (oob_required)
> +             value |= CMD_B_VALID;
> +     writel(value, ctrl->regs + CMD);
> +
> +     wait_for_completion(&ctrl->command_complete);
> +     wait_for_completion(&ctrl->dma_complete);
> +
> +     dma_unmap_single(ctrl->dev, dma_addr, dma_len, DMA_FROM_DEVICE);
> +
> +     return 0;
> +}
> +
> +static int tegra_nand_read_page_hwecc(struct mtd_info *mtd,
> +                                   struct nand_chip *chip,
> +                                   uint8_t *buf, int oob_required, int page)
> +{
> +     struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
> +     u32 value;
> +     int ret;
> +
> +     tegra_nand_hw_ecc(ctrl, chip, true);
> +     ret = tegra_nand_read_page(mtd, chip, buf, oob_required, page);
> +     tegra_nand_hw_ecc(ctrl, chip, false);
> +     if (ret)
> +             return ret;
> +
> +     /* If no correctable or un-correctable errors occured we can return 0 */
> +     if (!ctrl->last_read_error)
> +             return 0;
> +
> +     /*
> +      * Correctable or un-correctable errors did occure. NAND dec status
> +      * contains information for all ECC selections
> +      */
> +     ctrl->last_read_error = false;
> +     value = readl(ctrl->regs + DEC_STAT_BUF);
> +
> +     if (value & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) {
> +             /*
> +              * The ECC isn't smart enough to figure out if a page is
> +              * completely erased and flags an error in this case. So we
> +              * check the read data here to figure out if it's a legitimate
> +              * error or a false positive.
> +              */
> +             int i, ret;
> +             int flips_threshold = chip->ecc.strength / 2;
> +             int max_bitflips = 0;
> +
> +             for (i = 0; i < chip->ecc.steps; i++) {
> +                     u8 *data = buf + (chip->ecc.size * i);
> +
> +                     ret = nand_check_erased_ecc_chunk(data, chip->ecc.size,
> +                                                       NULL, 0,
> +                                                       NULL, 0,
> +                                                       flips_threshold);
> +                     if (ret < 0)
> +                             mtd->ecc_stats.failed++;
> +                     else
> +                             max_bitflips = max(ret, max_bitflips);
> +             }
> +
> +             return max_bitflips;
> +     } else {
> +             int max_corr_cnt, corr_sec_flag;
> +
> +             corr_sec_flag = (value & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
> +                             DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;
> +             max_corr_cnt = (value & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
> +                            DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;
> +
> +             /*
> +              * The value returned in the register is the maximum of
> +              * bitflips encountered in any of the ECC regions. As there is
> +              * no way to get the number of bitflips in a specific regions
> +              * we are not able to deliver correct stats but instead
> +              * overestimate the number of corrected bitflips by assuming
> +              * that all regions where errors have been corrected
> +              * encountered the maximum number of bitflips.
> +              */
> +             mtd->ecc_stats.corrected += max_corr_cnt * 
> hweight8(corr_sec_flag);
> +
> +             return max_corr_cnt;
> +     }
> +
> +}
> +
> +static int tegra_nand_write_page(struct mtd_info *mtd, struct nand_chip 
> *chip,
> +                              const uint8_t *buf, int oob_required, int page)
> +{
> +     struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
> +     dma_addr_t dma_addr;
> +     u32 value, addrs;
> +     int ret, dma_len;
> +
> +     writel(NAND_CMD_SEQIN, ctrl->regs + CMD_1);
> +     writel(NAND_CMD_PAGEPROG, ctrl->regs + CMD_2);
> +
> +     addrs = tegra_nand_fill_address(ctrl, chip, page);
> +
> +     dma_len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
> +     dma_addr = dma_map_single(ctrl->dev, (void *)buf, dma_len, 
> DMA_TO_DEVICE);
> +     ret = dma_mapping_error(ctrl->dev, dma_addr);
> +     if (ret) {
> +             dev_err(ctrl->dev, "dma mapping error\n");
> +             return -EINVAL;
> +     }
> +
> +     writel(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
> +     writel(dma_addr, ctrl->regs + DATA_PTR);
> +
> +     if (oob_required) {
> +             struct mtd_oob_region oobregion;
> +             dma_addr_t dma_addr_oob = dma_addr + mtd->writesize;
> +
> +             mtd_ooblayout_free(mtd, 0, &oobregion);
> +
> +             writel(oobregion.length - 1, ctrl->regs + DMA_CFG_B);
> +             writel(dma_addr_oob + oobregion.offset, ctrl->regs + TAG_PTR);
> +     } else {
> +             writel(0, ctrl->regs + DMA_CFG_B);
> +             writel(0, ctrl->regs + TAG_PTR);
> +     }
> +
> +     value = DMA_CTRL_GO | DMA_CTRL_OUT | DMA_CTRL_PERF_EN |
> +             DMA_CTRL_IE_DONE | DMA_CTRL_IS_DONE |
> +             DMA_CTRL_BURST_16 | DMA_CTRL_EN_A;
> +     if (oob_required)
> +             value |= DMA_CTRL_EN_B;
> +     writel(value, ctrl->regs + DMA_CTRL);
> +
> +     value = CMD_CLE | CMD_ALE | CMD_ALE_SIZE(addrs) | CMD_SEC_CMD |
> +             CMD_AFT_DAT | CMD_RBSY_CHK | CMD_GO | CMD_TX | CMD_A_VALID |
> +             CMD_TRANS_SIZE(9) | CMD_CE(ctrl->cur_chip);
> +     if (oob_required)
> +             value |= CMD_B_VALID;
> +     writel(value, ctrl->regs + CMD);
> +
> +     wait_for_completion(&ctrl->command_complete);
> +     wait_for_completion(&ctrl->dma_complete);
> +
> +
> +     dma_unmap_single(ctrl->dev, dma_addr, dma_len, DMA_TO_DEVICE);
> +
> +     return 0;
> +}
> +
> +static int tegra_nand_write_page_hwecc(struct mtd_info *mtd,
> +                                    struct nand_chip *chip,
> +                                    const uint8_t *buf, int oob_required,
> +                                    int page)
> +{
> +     struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
> +     int ret;
> +
> +     tegra_nand_hw_ecc(ctrl, chip, true);
> +     ret = tegra_nand_write_page(mtd, chip, buf, oob_required, page);
> +     tegra_nand_hw_ecc(ctrl, chip, false);
> +
> +     return ret;
> +}
> +
> +static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
> +                                 const struct nand_sdr_timings *timings)
> +{
> +     /*
> +      * The period (and all other timings in this function) is in ps,
> +      * so need to take care here to avoid integer overflows.
> +      */
> +     unsigned int rate = clk_get_rate(ctrl->clk) / 1000000;
> +     unsigned int period = DIV_ROUND_UP(1000000, rate);
> +     u32 val, reg = 0;
> +
> +     val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
> +                             timings->tRC_min), period);
> +     if (val > 2)
> +             val -= 3;
> +     reg |= TIMING_TCR_TAR_TRR(val);
> +
> +     val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
> +                                max(timings->tALS_min, timings->tALH_min)),
> +                        period);
> +     if (val > 1)
> +             val -= 2;
> +     reg |= TIMING_TCS(val);
> +
> +     val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
> +                        period);
> +     reg |= TIMING_TRP(val) | TIMING_TRP_RESP(val);
> +
> +     reg |= TIMING_TWB(DIV_ROUND_UP(timings->tWB_max, period));
> +     reg |= TIMING_TWHR(DIV_ROUND_UP(timings->tWHR_min, period));
> +     reg |= TIMING_TWH(DIV_ROUND_UP(timings->tWH_min, period));
> +     reg |= TIMING_TWP(DIV_ROUND_UP(timings->tWP_min, period));
> +     reg |= TIMING_TRH(DIV_ROUND_UP(timings->tRHW_min, period));
> +
> +     writel(reg, ctrl->regs + TIMING_1);
> +
> +     val = DIV_ROUND_UP(timings->tADL_min, period);
> +     if (val > 2)
> +             val -= 3;
> +     reg = TIMING_TADL(val);
> +
> +     writel(reg, ctrl->regs + TIMING_2);
> +}
> +
> +static int tegra_nand_setup_data_interface(struct mtd_info *mtd, int csline,
> +                                        const struct nand_data_interface 
> *conf)
> +{
> +     struct nand_chip *chip = mtd_to_nand(mtd);
> +     struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
> +     const struct nand_sdr_timings *timings;
> +
> +     timings = nand_get_sdr_timings(conf);
> +     if (IS_ERR(timings))
> +             return PTR_ERR(timings);
> +
> +     if (csline == NAND_DATA_IFACE_CHECK_ONLY)
> +             return 0;
> +
> +     tegra_nand_setup_timing(ctrl, timings);
> +
> +     return 0;
> +}
> +
> +static int tegra_nand_chips_init(struct device *dev,
> +                              struct tegra_nand_controller *ctrl)
> +{
> +     struct device_node *np = dev->of_node;
> +     struct device_node *np_nand;
> +     int nchips = of_get_child_count(np);
> +     struct tegra_nand_chip *nand;
> +     struct mtd_info *mtd;
> +     struct nand_chip *chip;
> +     unsigned long config, bch_config = 0;
> +     int bits_per_step;
> +     int err;
> +
> +     if (nchips != 1) {
> +             dev_err(dev, "currently only one NAND chip supported\n");
> +             return -EINVAL;
> +     }
> +
> +     np_nand = of_get_next_child(np, NULL);
> +
> +     nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
> +     if (!nand) {
> +             dev_err(dev, "could not allocate chip structure\n");
> +             return -ENOMEM;
> +     }
> +
> +     nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
> +
> +     if (IS_ERR(nand->wp_gpio)) {
> +             err = PTR_ERR(nand->wp_gpio);
> +             dev_err(dev, "failed to request WP GPIO: %d\n", err);
> +             return err;
> +     }
> +
> +     chip = &nand->chip;
> +     chip->controller = &ctrl->controller;
> +     ctrl->chip = chip;
> +
> +     mtd = nand_to_mtd(chip);
> +
> +     mtd->dev.parent = dev;
> +     mtd->name = "tegra_nand";
> +     mtd->owner = THIS_MODULE;
> +
> +     nand_set_flash_node(chip, np_nand);
> +
> +     chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
> +     chip->exec_op = tegra_nand_exec_op;
> +     chip->select_chip = tegra_nand_select_chip;
> +     chip->setup_data_interface = tegra_nand_setup_data_interface;
> +
> +     err = nand_scan_ident(mtd, 1, NULL);
> +     if (err)
> +             return err;
> +
> +     if (chip->bbt_options & NAND_BBT_USE_FLASH)
> +             chip->bbt_options |= NAND_BBT_NO_OOB;
> +
> +     chip->ecc.mode = NAND_ECC_HW;
> +     if (!chip->ecc.size)
> +             chip->ecc.size = 512;
> +     if (chip->ecc.size != 512)
> +             return -EINVAL;
> +
> +     chip->ecc.read_page = tegra_nand_read_page_hwecc;
> +     chip->ecc.write_page = tegra_nand_write_page_hwecc;
> +     /* Not functional for unknown reason...
> +     chip->ecc.read_page_raw = tegra_nand_read_page;
> +     chip->ecc.write_page_raw = tegra_nand_write_page;
> +     */
> +     config = readl(ctrl->regs + CFG);
> +     config |= CFG_PIPE_EN | CFG_SKIP_SPARE | CFG_SKIP_SPARE_SIZE_4;
> +
> +     if (chip->options & NAND_BUSWIDTH_16)
> +             config |= CFG_BUS_WIDTH_16;
> +
> +     switch (chip->ecc.algo) {
> +     case NAND_ECC_RS:
> +             bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
> +             mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops);
> +             switch (chip->ecc.strength) {
> +             case 4:
> +                     config |= CFG_ECC_SEL | CFG_TVAL_4;
> +                     break;
> +             case 6:
> +                     config |= CFG_ECC_SEL | CFG_TVAL_6;
> +                     break;
> +             case 8:
> +                     config |= CFG_ECC_SEL | CFG_TVAL_8;
> +                     break;
> +             default:
> +                     dev_err(dev, "ECC strength %d not supported\n",
> +                             chip->ecc.strength);
> +                     return -EINVAL;
> +             }
> +             break;
> +     case NAND_ECC_BCH:
> +             bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
> +             mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops);
> +             switch (chip->ecc.strength) {
> +             case 4:
> +                     bch_config = BCH_TVAL_4;
> +                     break;
> +             case 8:
> +                     bch_config = BCH_TVAL_8;
> +                     break;
> +             case 14:
> +                     bch_config = BCH_TVAL_14;
> +                     break;
> +             case 16:
> +                     bch_config = BCH_TVAL_16;
> +                     break;
> +             default:
> +                     dev_err(dev, "ECC strength %d not supported\n",
> +                             chip->ecc.strength);
> +                     return -EINVAL;
> +             }
> +             break;
> +     default:
> +             dev_err(dev, "ECC algorithm not supported\n");
> +             return -EINVAL;
> +     }
> +
> +     chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, 8);
> +
> +     switch (mtd->writesize) {
> +     case 256:
> +             config |= CFG_PS_256;
> +             break;
> +     case 512:
> +             config |= CFG_PS_512;
> +             break;
> +     case 1024:
> +             config |= CFG_PS_1024;
> +             break;
> +     case 2048:
> +             config |= CFG_PS_2048;
> +             break;
> +     case 4096:
> +             config |= CFG_PS_4096;
> +             break;
> +     default:
> +             dev_err(dev, "unhandled writesize %d\n", mtd->writesize);
> +             return -ENODEV;
> +     }
> +
> +     writel(config, ctrl->regs + CFG);
> +     writel(bch_config, ctrl->regs + BCH_CONFIG);
> +
> +     err = nand_scan_tail(mtd);
> +     if (err)
> +             return err;
> +
> +     config |= CFG_TAG_BYTE_SIZE(mtd_ooblayout_count_freebytes(mtd) - 1);
> +     writel(config, ctrl->regs + CFG);
> +
> +     err = mtd_device_register(mtd, NULL, 0);
> +     if (err)
> +             return err;
> +
> +     return 0;
> +}
> +
> +static int tegra_nand_probe(struct platform_device *pdev)
> +{
> +     struct reset_control *rst;
> +     struct tegra_nand_controller *ctrl;
> +     struct resource *res;
> +     unsigned long value;
> +     int irq, err = 0;
> +
> +     ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
> +     if (!ctrl)
> +             return -ENOMEM;
> +
> +     ctrl->dev = &pdev->dev;
> +     nand_hw_control_init(&ctrl->controller);
> +
> +     res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> +     ctrl->regs = devm_ioremap_resource(&pdev->dev, res);
> +     if (IS_ERR(ctrl->regs))
> +             return PTR_ERR(ctrl->regs);
> +
> +     rst = devm_reset_control_get(&pdev->dev, "nand");
> +     if (IS_ERR(rst))
> +             return PTR_ERR(rst);
> +
> +     ctrl->clk = devm_clk_get(&pdev->dev, "nand");
> +     if (IS_ERR(ctrl->clk))
> +             return PTR_ERR(ctrl->clk);
> +
> +     err = clk_prepare_enable(ctrl->clk);
> +     if (err)
> +             return err;
> +
> +     reset_control_reset(rst);

Technically reset_control_reset() could fail, so this should be:

        err = reset_control_reset(rst);
        if (err)
                goto err_disable_clk;

> +
> +     value = HWSTATUS_RDSTATUS_MASK(1) | HWSTATUS_RDSTATUS_VALUE(0) |
> +             HWSTATUS_RBSY_MASK(NAND_STATUS_READY) |
> +             HWSTATUS_RBSY_VALUE(NAND_STATUS_READY);
> +     writel(NAND_CMD_STATUS, ctrl->regs + HWSTATUS_CMD);
> +     writel(value, ctrl->regs + HWSTATUS_MASK);
> +
> +     init_completion(&ctrl->command_complete);
> +     init_completion(&ctrl->dma_complete);
> +
> +     /* clear interrupts */
> +     value = readl(ctrl->regs + ISR);
> +     writel(value, ctrl->regs + ISR);
> +
> +     irq = platform_get_irq(pdev, 0);
> +     err = devm_request_irq(&pdev->dev, irq, tegra_nand_irq, 0,
> +                            dev_name(&pdev->dev), ctrl);
> +     if (err)
> +             goto err_disable_clk;
> +
> +     writel(DMA_CTRL_IS_DONE, ctrl->regs + DMA_CTRL);
> +
> +     /* enable interrupts */
> +     value = IER_UND | IER_OVR | IER_CMD_DONE | IER_ECC_ERR | IER_GIE;
> +     writel(value, ctrl->regs + IER);
> +
> +     /* reset config */
> +     writel(0, ctrl->regs + CFG);
> +
> +     err = tegra_nand_chips_init(ctrl->dev, ctrl);
> +     if (err)
> +             goto err_disable_clk;
> +
> +     platform_set_drvdata(pdev, ctrl);
> +
> +     return 0;
> +
> +err_disable_clk:
> +     clk_disable_unprepare(ctrl->clk);
> +     return err;
> +}
> +
> +static int tegra_nand_remove(struct platform_device *pdev)
> +{
> +     struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
> +
> +     nand_release(nand_to_mtd(ctrl->chip));
> +
> +     clk_disable_unprepare(ctrl->clk);
> +
> +     return 0;
> +}
> +
> +static const struct of_device_id tegra_nand_of_match[] = {
> +     { .compatible = "nvidia,tegra20-nand" },
> +     { /* sentinel */ }
> +};
> +
> +static struct platform_driver tegra_nand_driver = {
> +     .driver = {
> +             .name = "tegra-nand",
> +             .of_match_table = tegra_nand_of_match,
> +     },
> +     .probe = tegra_nand_probe,
> +     .remove = tegra_nand_remove,
> +};
> +module_platform_driver(tegra_nand_driver);
> +
> +MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
> +MODULE_AUTHOR("Thierry Reding <thierry.red...@nvidia.com>");
> +MODULE_AUTHOR("Lucas Stach <d...@lynxeye.de>");
> +MODULE_AUTHOR("Stefan Agner <ste...@agner.ch>");
> +MODULE_LICENSE("GPL v2");
> +MODULE_DEVICE_TABLE(of, tegra_nand_of_match);
> 

Reply via email to