On 13.11.18 08:04, Yogesh Narayan Gaur wrote:
> Hi Frieder,
> 
> Thanks for review.
> 
>> -----Original Message-----
>> From: Schrempf Frieder [mailto:frieder.schre...@kontron.de]
>> Sent: Wednesday, November 7, 2018 9:52 PM
>> To: Yogesh Narayan Gaur <yogeshnarayan.g...@nxp.com>; linux-
>> m...@lists.infradead.org; boris.brezil...@bootlin.com; marek.va...@gmail.com;
>> broo...@kernel.org; linux-...@vger.kernel.org; devicet...@vger.kernel.org
>> Cc: r...@kernel.org; mark.rutl...@arm.com; shawn...@kernel.org; linux-
>> arm-ker...@lists.infradead.org; computersforpe...@gmail.com;
>> frieder.schre...@exceet.de; linux-kernel@vger.kernel.org
>> Subject: Re: [PATCH RESEND v4 1/5] spi: spi-mem: Add driver for NXP FlexSPI
>> controller
>>
>> Hi Yogesh,
>>
>> I didn't have time to look at all of the code, but nevertheless here are some
>> comments.
>>
>> On 23.10.18 10:56, Yogesh Narayan Gaur wrote:
>>> - Add driver for NXP FlexSPI host controller
>>>
>>> (0) What is the FlexSPI controller?
>>>    FlexSPI is a flexsible SPI host controller which supports two SPI
>>>    channels and up to 4 external devices. Each channel supports
>>>    Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
>>>    data lines) i.e. FlexSPI acts as an interface to external devices,
>>>    maximum 4, each with up to 8 bidirectional data lines.
>>>
>>>    It uses new SPI memory interface of the SPI framework to issue
>>>    flash memory operations to up to four connected flash
>>>    devices (2 buses with 2 CS each).
>>>
>>> (1) Tested this driver with the mtd_debug and JFFS2 filesystem utility
>>>    on NXP LX2160ARDB and LX2160AQDS targets.
>>>    LX2160ARDB is having two NOR slave device connected on single bus A
>>>    i.e. A0 and A1 (CS0 and CS1).
>>>    LX2160AQDS is having two NOR slave device connected on separate buses
>>>    one flash on A0 and second on B1 i.e. (CS0 and CS3).
>>>    Verified this driver on following SPI NOR flashes:
>>>       Micron, mt35xu512ab, [Read - 1 bit mode]
>>>       Cypress, s25fl512s, [Read - 1/2/4 bit mode]
>>>
>>> Signed-off-by: Yogesh Gaur <yogeshnarayan.g...@nxp.com>
>>> ---
>>> Changes for v4:
>>> - Incorporate Boris review comments
>>>     * Use readl_poll_timeout() instead of busy looping.
>>>     * Re-define register masking as per comment.
>>>     * Drop fspi_devtype enum.
>>> Changes for v3:
>>> - Added endianness flag in platform specific structure instead of DTS.
>>> - Modified nxp_fspi_read_ahb(), removed remapping code.
>>> - Added Boris and Frieder as Author and provided reference of
>>> spi-fsl-qspi.c Changes for v2:
>>> - Incorporated Boris review comments.
>>> - Remove dependency of driver over connected flash device size.
>>> - Modified the logic to select requested CS.
>>> - Remove SPI-Octal Macros.
>>>
>>>    drivers/spi/Kconfig        |   10 +
>>>    drivers/spi/Makefile       |    1 +
>>>    drivers/spi/spi-nxp-fspi.c | 1158
>> ++++++++++++++++++++++++++++++++++++++++++++
>>>    3 files changed, 1169 insertions(+)
>>>    create mode 100644 drivers/spi/spi-nxp-fspi.c
>>>
>>> diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig index
>>> ad5d68e..68da874 100644
>>> --- a/drivers/spi/Kconfig
>>> +++ b/drivers/spi/Kconfig
>>> @@ -251,6 +251,16 @@ config SPI_FSL_LPSPI
>>>     help
>>>       This enables Freescale i.MX LPSPI controllers in master mode.
>>>
>>> +config SPI_NXP_FLEXSPI
>>> +   tristate "NXP Flex SPI controller"
>>> +   depends on ARCH_LAYERSCAPE || HAS_IOMEM
>>> +   help
>>> +     This enables support for the Flex SPI controller in master mode.
>>> +     Up to four slave devices can be connected on two buses with two
>>> +     chipselects each.
>>> +     This controller does not support generic SPI messages and only
>>> +     supports the high-level SPI memory interface.
>>> +
>>>    config SPI_GPIO
>>>     tristate "GPIO-based bitbanging SPI Master"
>>>     depends on GPIOLIB || COMPILE_TEST
>>> diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile index
>>> cb1f437..52c9f18 100644
>>> --- a/drivers/spi/Makefile
>>> +++ b/drivers/spi/Makefile
>>> @@ -59,6 +59,7 @@ obj-$(CONFIG_SPI_MPC52xx)         += spi-
>> mpc52xx.o
>>>    obj-$(CONFIG_SPI_MT65XX)                += spi-mt65xx.o
>>>    obj-$(CONFIG_SPI_MXS)                    += spi-mxs.o
>>>    obj-$(CONFIG_SPI_NUC900)         += spi-nuc900.o
>>> +obj-$(CONFIG_SPI_NXP_FLEXSPI)              += spi-nxp-fspi.o
>>>    obj-$(CONFIG_SPI_OC_TINY)                += spi-oc-tiny.o
>>>    spi-octeon-objs                          := spi-cavium.o spi-cavium-
>> octeon.o
>>>    obj-$(CONFIG_SPI_OCTEON)         += spi-octeon.o
>>> diff --git a/drivers/spi/spi-nxp-fspi.c b/drivers/spi/spi-nxp-fspi.c
>>> new file mode 100644 index 0000000..e5188b2
>>> --- /dev/null
>>> +++ b/drivers/spi/spi-nxp-fspi.c
>>> @@ -0,0 +1,1158 @@
>>> +// SPDX-License-Identifier: GPL-2.0+
>>> +
>>> +/*
>>> + * NXP FlexSPI(FSPI) controller driver.
>>> + *
>>> + * Copyright 2018 NXP.
>>> + *
>>> + * FlexSPI is a flexsible SPI host controller which supports two SPI
>>> + * channels and up to 4 external devices. Each channel supports
>>> + * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
>>> + * data lines).
>>> + *
>>> + * FlexSPI controller is driven by the LUT(Look-up Table) registers
>>> + * LUT registers are a look-up-table for sequences of instructions.
>>> + * A valid sequence consists of four LUT registers.
>>> + * Maximum 32 LUT sequences can be programmed simultaneously.
>>> + *
>>> + * LUTs are being created at run-time based on the commands passed
>>> + * from the spi-mem framework, thus using single LUT index.
>>> + *
>>> + * Software triggered Flash read/write access by IP Bus.
>>> + *
>>> + * Memory mapped read access by AHB Bus.
>>> + *
>>> + * Based on SPI MEM interface and spi-fsl-qspi.c driver.
>>> + *
>>> + * Author:
>>> + *     Yogesh Gaur <yogeshnarayan.g...@nxp.com>
>>> + *     Boris Brezillion <boris.brezil...@bootlin.com>
>>> + *     Frieder Schrempf <frieder.schre...@exceet.de>
>>> + */
>>> +
>>> +#include <linux/bitops.h>
>>> +#include <linux/clk.h>
>>> +#include <linux/completion.h>
>>> +#include <linux/delay.h>
>>> +#include <linux/err.h>
>>> +#include <linux/errno.h>
>>> +#include <linux/interrupt.h>
>>> +#include <linux/io.h>
>>> +#include <linux/jiffies.h>
>>> +#include <linux/kernel.h>
>>> +#include <linux/module.h>
>>> +#include <linux/mutex.h>
>>> +#include <linux/of.h>
>>> +#include <linux/of_device.h>
>>> +#include <linux/platform_device.h>
>>> +#include <linux/pm_qos.h>
>>> +#include <linux/sizes.h>
>>> +#include <linux/iopoll.h>
>>
>> If you would move this below io.h, then all the includes would stay in
>> alphabetical order ;)
>>
> Ok, would change for next version.
> 
>>> +
>>> +#include <linux/spi/spi.h>
>>> +#include <linux/spi/spi-mem.h>
>>> +
>>> +/*
>>> + * The driver only uses one single LUT entry, that is updated on
>>> + * each call of exec_op(). Index 0 is preset at boot with a basic
>>> + * read operation, so let's use the last entry (31).
>>> + */
>>> +#define    SEQID_LUT                       31
>>> +
>>> +/* Registers used by the driver */
>>> +#define FSPI_MCR0                  0x00
>>> +#define FSPI_MCR0_AHB_TIMEOUT(x)   ((x) << 24)
>>> +#define FSPI_MCR0_IP_TIMEOUT(x)            ((x) << 16)
>>> +#define FSPI_MCR0_LEARN_EN         BIT(15)
>>> +#define FSPI_MCR0_SCRFRUN_EN               BIT(14)
>>> +#define FSPI_MCR0_OCTCOMB_EN               BIT(13)
>>> +#define FSPI_MCR0_DOZE_EN          BIT(12)
>>> +#define FSPI_MCR0_HSEN                     BIT(11)
>>> +#define FSPI_MCR0_SERCLKDIV                BIT(8)
>>> +#define FSPI_MCR0_ATDF_EN          BIT(7)
>>> +#define FSPI_MCR0_ARDF_EN          BIT(6)
>>> +#define FSPI_MCR0_RXCLKSRC(x)              ((x) << 4)
>>> +#define FSPI_MCR0_END_CFG(x)               ((x) << 2)
>>> +#define FSPI_MCR0_MDIS                     BIT(1)
>>> +#define FSPI_MCR0_SWRST                    BIT(0)
>>> +
>>> +#define FSPI_MCR1                  0x04
>>> +#define FSPI_MCR1_SEQ_TIMEOUT(x)   ((x) << 16)
>>> +#define FSPI_MCR1_AHB_TIMEOUT(x)   (x)
>>> +
>>> +#define FSPI_MCR2                  0x08
>>> +#define FSPI_MCR2_IDLE_WAIT(x)             ((x) << 24)
>>> +#define FSPI_MCR2_SAMEDEVICEEN             BIT(15)
>>> +#define FSPI_MCR2_CLRLRPHS         BIT(14)
>>> +#define FSPI_MCR2_ABRDATSZ         BIT(8)
>>> +#define FSPI_MCR2_ABRLEARN         BIT(7)
>>> +#define FSPI_MCR2_ABR_READ         BIT(6)
>>> +#define FSPI_MCR2_ABRWRITE         BIT(5)
>>> +#define FSPI_MCR2_ABRDUMMY         BIT(4)
>>> +#define FSPI_MCR2_ABR_MODE         BIT(3)
>>> +#define FSPI_MCR2_ABRCADDR         BIT(2)
>>> +#define FSPI_MCR2_ABRRADDR         BIT(1)
>>> +#define FSPI_MCR2_ABR_CMD          BIT(0)
>>> +
>>> +#define FSPI_AHBCR                 0x0c
>>> +#define FSPI_AHBCR_RDADDROPT               BIT(6)
>>> +#define FSPI_AHBCR_PREF_EN         BIT(5)
>>> +#define FSPI_AHBCR_BUFF_EN         BIT(4)
>>> +#define FSPI_AHBCR_CACH_EN         BIT(3)
>>> +#define FSPI_AHBCR_CLRTXBUF                BIT(2)
>>> +#define FSPI_AHBCR_CLRRXBUF                BIT(1)
>>> +#define FSPI_AHBCR_PAR_EN          BIT(0)
>>> +
>>> +#define FSPI_INTEN                 0x10
>>> +#define FSPI_INTEN_SCLKSBWR                BIT(9)
>>> +#define FSPI_INTEN_SCLKSBRD                BIT(8)
>>> +#define FSPI_INTEN_DATALRNFL               BIT(7)
>>> +#define FSPI_INTEN_IPTXWE          BIT(6)
>>> +#define FSPI_INTEN_IPRXWA          BIT(5)
>>> +#define FSPI_INTEN_AHBCMDERR               BIT(4)
>>> +#define FSPI_INTEN_IPCMDERR                BIT(3)
>>> +#define FSPI_INTEN_AHBCMDGE                BIT(2)
>>> +#define FSPI_INTEN_IPCMDGE         BIT(1)
>>> +#define FSPI_INTEN_IPCMDDONE               BIT(0)
>>> +
>>> +#define FSPI_INTR                  0x14
>>> +#define FSPI_INTR_SCLKSBWR         BIT(9)
>>> +#define FSPI_INTR_SCLKSBRD         BIT(8)
>>> +#define FSPI_INTR_DATALRNFL                BIT(7)
>>> +#define FSPI_INTR_IPTXWE           BIT(6)
>>> +#define FSPI_INTR_IPRXWA           BIT(5)
>>> +#define FSPI_INTR_AHBCMDERR                BIT(4)
>>> +#define FSPI_INTR_IPCMDERR         BIT(3)
>>> +#define FSPI_INTR_AHBCMDGE         BIT(2)
>>> +#define FSPI_INTR_IPCMDGE          BIT(1)
>>> +#define FSPI_INTR_IPCMDDONE                BIT(0)
>>> +
>>> +#define FSPI_LUTKEY                        0x18
>>> +#define FSPI_LUTKEY_VALUE          0x5AF05AF0
>>> +
>>> +#define FSPI_LCKCR                 0x1C
>>> +
>>> +#define FSPI_LCKER_LOCK                    0x1
>>> +#define FSPI_LCKER_UNLOCK          0x2
>>> +
>>> +#define FSPI_BUFXCR_INVALID_MSTRID 0xE
>>> +#define FSPI_AHBRX_BUF0CR0         0x20
>>> +#define FSPI_AHBRX_BUF1CR0         0x24
>>> +#define FSPI_AHBRX_BUF2CR0         0x28
>>> +#define FSPI_AHBRX_BUF3CR0         0x2C
>>> +#define FSPI_AHBRX_BUF4CR0         0x30
>>> +#define FSPI_AHBRX_BUF5CR0         0x34
>>> +#define FSPI_AHBRX_BUF6CR0         0x38
>>> +#define FSPI_AHBRX_BUF7CR0         0x3C
>>> +#define FSPI_AHBRXBUF0CR7_PREF             BIT(31)
>>> +
>>> +#define FSPI_AHBRX_BUF0CR1         0x40
>>> +#define FSPI_AHBRX_BUF1CR1         0x44
>>> +#define FSPI_AHBRX_BUF2CR1         0x48
>>> +#define FSPI_AHBRX_BUF3CR1         0x4C
>>> +#define FSPI_AHBRX_BUF4CR1         0x50
>>> +#define FSPI_AHBRX_BUF5CR1         0x54
>>> +#define FSPI_AHBRX_BUF6CR1         0x58
>>> +#define FSPI_AHBRX_BUF7CR1         0x5C
>>> +
>>> +#define FSPI_FLSHA1CR0                     0x60
>>> +#define FSPI_FLSHA2CR0                     0x64
>>> +#define FSPI_FLSHB1CR0                     0x68
>>> +#define FSPI_FLSHB2CR0                     0x6C
>>> +#define FSPI_FLSHXCR0_SZ_KB                10
>>> +#define FSPI_FLSHXCR0_SZ(x)                ((x) >> FSPI_FLSHXCR0_SZ_KB)
>>> +
>>> +#define FSPI_FLSHA1CR1                     0x70
>>> +#define FSPI_FLSHA2CR1                     0x74
>>> +#define FSPI_FLSHB1CR1                     0x78
>>> +#define FSPI_FLSHB2CR1                     0x7C
>>> +#define FSPI_FLSHXCR1_CSINTR(x)            ((x) << 16)
>>> +#define FSPI_FLSHXCR1_CAS(x)               ((x) << 11)
>>> +#define FSPI_FLSHXCR1_WA           BIT(10)
>>> +#define FSPI_FLSHXCR1_TCSH(x)              ((x) << 5)
>>> +#define FSPI_FLSHXCR1_TCSS(x)              (x)
>>> +
>>> +#define FSPI_FLSHA1CR2                     0x80
>>> +#define FSPI_FLSHA2CR2                     0x84
>>> +#define FSPI_FLSHB1CR2                     0x88
>>> +#define FSPI_FLSHB2CR2                     0x8C
>>> +#define FSPI_FLSHXCR2_CLRINSP              BIT(24)
>>> +#define FSPI_FLSHXCR2_AWRWAIT              BIT(16)
>>> +#define FSPI_FLSHXCR2_AWRSEQN_SHIFT        13
>>> +#define FSPI_FLSHXCR2_AWRSEQI_SHIFT        8
>>> +#define FSPI_FLSHXCR2_ARDSEQN_SHIFT        5
>>> +#define FSPI_FLSHXCR2_ARDSEQI_SHIFT        0
>>> +
>>> +#define FSPI_IPCR0                 0xA0
>>> +
>>> +#define FSPI_IPCR1                 0xA4
>>> +#define FSPI_IPCR1_IPAREN          BIT(31)
>>> +#define FSPI_IPCR1_SEQNUM_SHIFT            24
>>> +#define FSPI_IPCR1_SEQID_SHIFT             16
>>> +#define FSPI_IPCR1_IDATSZ(x)               (x)
>>> +
>>> +#define FSPI_IPCMD                 0xB0
>>> +#define FSPI_IPCMD_TRG                     BIT(0)
>>> +
>>> +#define FSPI_DLPR                  0xB4
>>> +
>>> +#define FSPI_IPRXFCR                       0xB8
>>> +#define FSPI_IPRXFCR_CLR           BIT(0)
>>> +#define FSPI_IPRXFCR_DMA_EN                BIT(1)
>>> +#define FSPI_IPRXFCR_WMRK(x)               ((x) << 2)
>>> +
>>> +#define FSPI_IPTXFCR                       0xBC
>>> +#define FSPI_IPTXFCR_CLR           BIT(0)
>>> +#define FSPI_IPTXFCR_DMA_EN                BIT(1)
>>> +#define FSPI_IPTXFCR_WMRK(x)               ((x) << 2)
>>> +
>>> +#define FSPI_DLLACR                        0xC0
>>> +#define FSPI_DLLACR_OVRDEN         BIT(8)
>>> +
>>> +#define FSPI_DLLBCR                        0xC4
>>> +#define FSPI_DLLBCR_OVRDEN         BIT(8)
>>> +
>>> +#define FSPI_STS0                  0xE0
>>> +#define FSPI_STS0_DLPHB(x)         ((x) << 8)
>>> +#define FSPI_STS0_DLPHA(x)         ((x) << 4)
>>> +#define FSPI_STS0_CMD_SRC(x)               ((x) << 2)
>>> +#define FSPI_STS0_ARB_IDLE         BIT(1)
>>> +#define FSPI_STS0_SEQ_IDLE         BIT(0)
>>> +
>>> +#define FSPI_STS1                  0xE4
>>> +#define FSPI_STS1_IP_ERRCD(x)              ((x) << 24)
>>> +#define FSPI_STS1_IP_ERRID(x)              ((x) << 16)
>>> +#define FSPI_STS1_AHB_ERRCD(x)             ((x) << 8)
>>> +#define FSPI_STS1_AHB_ERRID(x)             (x)
>>> +
>>> +#define FSPI_AHBSPNST                      0xEC
>>> +#define FSPI_AHBSPNST_DATLFT(x)            ((x) << 16)
>>> +#define FSPI_AHBSPNST_BUFID(x)             ((x) << 1)
>>> +#define FSPI_AHBSPNST_ACTIVE               BIT(0)
>>> +
>>> +#define FSPI_IPRXFSTS                      0xF0
>>> +#define FSPI_IPRXFSTS_RDCNTR(x)            ((x) << 16)
>>> +#define FSPI_IPRXFSTS_FILL(x)              (x)
>>> +
>>> +#define FSPI_IPTXFSTS                      0xF4
>>> +#define FSPI_IPTXFSTS_WRCNTR(x)            ((x) << 16)
>>> +#define FSPI_IPTXFSTS_FILL(x)              (x)
>>> +
>>> +#define FSPI_RFDR                  0x100
>>> +#define FSPI_TFDR                  0x180
>>> +
>>> +#define FSPI_LUT_BASE                      0x200
>>> +#define FSPI_LUT_OFFSET                    (SEQID_LUT * 4 * 4)
>>> +#define FSPI_LUT_REG(idx) \
>>> +   (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
>>> +
>>> +/* register map end */
>>> +
>>> +/* Instruction set for the LUT register. */
>>> +#define LUT_STOP                   0x00
>>> +#define LUT_CMD                            0x01
>>> +#define LUT_ADDR                   0x02
>>> +#define LUT_CADDR_SDR                      0x03
>>> +#define LUT_MODE                   0x04
>>> +#define LUT_MODE2                  0x05
>>> +#define LUT_MODE4                  0x06
>>> +#define LUT_MODE8                  0x07
>>> +#define LUT_NXP_WRITE                      0x08
>>> +#define LUT_NXP_READ                       0x09
>>> +#define LUT_LEARN_SDR                      0x0A
>>> +#define LUT_DATSZ_SDR                      0x0B
>>> +#define LUT_DUMMY                  0x0C
>>> +#define LUT_DUMMY_RWDS_SDR         0x0D
>>> +#define LUT_JMP_ON_CS                      0x1F
>>> +#define LUT_CMD_DDR                        0x21
>>> +#define LUT_ADDR_DDR                       0x22
>>> +#define LUT_CADDR_DDR                      0x23
>>> +#define LUT_MODE_DDR                       0x24
>>> +#define LUT_MODE2_DDR                      0x25
>>> +#define LUT_MODE4_DDR                      0x26
>>> +#define LUT_MODE8_DDR                      0x27
>>> +#define LUT_WRITE_DDR                      0x28
>>> +#define LUT_READ_DDR                       0x29
>>> +#define LUT_LEARN_DDR                      0x2A
>>> +#define LUT_DATSZ_DDR                      0x2B
>>> +#define LUT_DUMMY_DDR                      0x2C
>>> +#define LUT_DUMMY_RWDS_DDR         0x2D
>>> +
>>> +/*
>>> + * Calculate number of required PAD bits for LUT register.
>>> + *
>>> + * The pad stands for the number of IO lines [0:7].
>>> + * For example, the octal read needs eight IO lines,
>>> + * so you should use LUT_PAD(8). This macro
>>> + * returns 3 i.e. use eight (2^3) IP lines for read.
>>> + */
>>> +#define LUT_PAD(x) (fls(x) - 1)
>>> +
>>> +/*
>>> + * Macro for constructing the LUT entries with the following
>>> + * register layout:
>>> + *
>>> + *  ---------------------------------------------------
>>> + *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
>>> + *  ---------------------------------------------------
>>> + */
>>> +#define PAD_SHIFT          8
>>> +#define INSTR_SHIFT                10
>>> +#define OPRND_SHIFT                16
>>> +
>>> +/* Macros for constructing the LUT register. */
>>> +#define LUT_DEF(idx, ins, pad, opr)                          \
>>> +   ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
>>> +   (opr)) << (((idx) % 2) * OPRND_SHIFT))
>>> +
>>> +/* Oprands for the LUT register. */
>>
>> s/Oprands/Operands
> Ok
> 
>>
>>> +#define ADDR8BIT           0x08
>>> +#define ADDR16BIT          0x10
>>> +#define ADDR24BIT          0x18
>>> +#define ADDR32BIT          0x20
>>> +
>>> +#define POLL_TOUT_US               5000
>>> +
>>> +struct nxp_fspi_devtype_data {
>>> +   unsigned int rxfifo;
>>> +   unsigned int txfifo;
>>> +   unsigned int ahb_buf_size;
>>> +   unsigned int quirks;
>>> +   bool little_endian;
>>> +};
>>> +
>>> +static const struct nxp_fspi_devtype_data lx2160a_data = {
>>> +   .rxfifo = SZ_512,       /* (64  * 64 bits)  */
>>> +   .txfifo = SZ_1K,        /* (128 * 64 bits)  */
>>> +   .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
>>> +   .quirks = 0,
>>> +   .little_endian = 1,     /* little-endian    */
>>
>> I'm not sure if this is really necessary, but for a boolean probably 'true' 
>> would be
>> better than '1'.
> Ok
> 
>>
>>> +};
>>> +
>>> +#define NXP_FSPI_MAX_CHIPSELECT            4
>>> +
>>> +struct nxp_fspi {
>>> +   void __iomem *iobase;
>>> +   void __iomem *ahb_addr;
>>> +   u32 memmap_phy;
>>> +   u32 memmap_phy_size;
>>> +   struct clk *clk, *clk_en;
>>> +   struct device *dev;
>>> +   struct completion c;
>>> +   const struct nxp_fspi_devtype_data *devtype_data;
>>> +   struct mutex lock;
>>> +   struct pm_qos_request pm_qos_req;
>>> +   int selected;
>>> +   void (*write)(u32 val, void __iomem *addr);
>>> +   u32 (*read)(void __iomem *addr);
>>> +};
>>> +
>>> +static void fspi_writel_be(u32 val, void __iomem *addr) {
>>> +   iowrite32be(val, addr);
>>> +}
>>> +
>>> +static void fspi_writel(u32 val, void __iomem *addr) {
>>> +   iowrite32(val, addr);
>>> +}
>>> +
>>> +static u32 fspi_readl_be(void __iomem *addr) {
>>> +   return ioread32be(addr);
>>> +}
>>> +
>>> +static u32 fspi_readl(void __iomem *addr) {
>>> +   return ioread32(addr);
>>> +}
>>> +
>>> +static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) {
>>> +   struct nxp_fspi *f = dev_id;
>>> +   u32 reg;
>>> +
>>> +   /* clear interrupt */
>>> +   reg = f->read(f->iobase + FSPI_INTR);
>>> +   f->write(FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
>>> +
>>> +   if (reg & FSPI_INTR_IPCMDDONE)
>>> +           complete(&f->c);
>>> +
>>> +   return IRQ_HANDLED;
>>> +}
>>> +
>>> +static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) {
>>> +   switch (width) {
>>> +   case 1:
>>> +   case 2:
>>> +   case 4:
>>> +   case 8:
>>> +           return 0;
>>> +   }
>>> +
>>> +   return -ENOTSUPP;
>>> +}
>>> +
>>> +static bool nxp_fspi_supports_op(struct spi_mem *mem,
>>> +                            const struct spi_mem_op *op)
>>> +{
>>> +   struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
>>> +   int ret;
>>> +
>>> +   ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
>>> +
>>> +   if (op->addr.nbytes)
>>> +           ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
>>> +
>>> +   if (op->dummy.nbytes)
>>> +           ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
>>> +
>>> +   if (op->data.nbytes)
>>> +           ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
>>> +
>>> +   if (ret)
>>> +           return false;
>>> +
>>> +   /*
>>> +    * The number of instructions needed for the op, needs
>>> +    * to fit into a single LUT entry.
>>> +    */
>>> +   if (op->addr.nbytes +
>>> +      (op->dummy.nbytes ? 1:0) +
>>> +      (op->data.nbytes ? 1:0) > 6)
>>> +           return false;
>>> +
>>> +   /* Max 64 dummy clock cycles supported */
>>> +   if (op->dummy.buswidth &&
>>> +       (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
>>> +           return false;
>>> +
>>> +   /* Max data length, check controller limits and alignment */
>>> +   if (op->data.dir == SPI_MEM_DATA_IN &&
>>> +       (op->data.nbytes > f->devtype_data->ahb_buf_size ||
>>> +        (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
>>> +         !IS_ALIGNED(op->data.nbytes, 8))))
>>> +           return false;
>>> +
>>> +   if (op->data.dir == SPI_MEM_DATA_OUT &&
>>> +       op->data.nbytes > f->devtype_data->txfifo)
>>> +           return false;
>>> +
>>> +   return true;
>>> +}
>>> +
>>> +/* Instead of busy looping invoke readl_poll_timeout functionality.
>>> +*/ static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, 
>>> u32
>> reg,
>>> +                           u32 mask, u32 delay_us, u32 timeout_us)
>>
>> You do not need to pass 'reg' here, you can just use a local variable.
>>
> Ok, let me verify by using local variable instead of passing status in reg 
> variable.
> 
>>> +{
>>> +   u32 l_mask;
>>> +
>>> +   if (f->devtype_data->little_endian)
>>> +           l_mask = mask;
>>> +   else
>>> +           l_mask = (u32)cpu_to_be32(mask);
>>
>> You could shorten this a bit by just reusing 'mask' and drop 'l_mask'.
>> See my version of this function in v4 of the FSL QSPI driver.
> Ok, would check your implementation.

Please note, that the break condition in my v4 needs to be inverted. 
It's currently wrong and I will fix it in the next version.

> 
>>
>>> +
>>> +   return readl_poll_timeout(base, reg, (reg & l_mask),
>>> +                             delay_us, timeout_us);
>>> +}
>>> +
>>> +/*
>>> + * If the slave device content being changed by Write/Erase, need to
>>> + * invalidate the AHB buffer. This can be achieved by doing the reset
>>> + * of controller after setting MCR0[SWRESET] bit.
>>> + */
>>> +static inline void nxp_fspi_invalid(struct nxp_fspi *f) {
>>> +   u32 reg;
>>> +   int ret;
>>> +   u32 l_mask;
>>> +
>>> +   reg = f->read(f->iobase + FSPI_MCR0);
>>> +   f->write(reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
>>> +
>>> +   if (f->devtype_data->little_endian)
>>> +           l_mask = FSPI_MCR0_SWRST;
>>> +   else
>>> +           l_mask = (u32)cpu_to_be32(FSPI_MCR0_SWRST);
>>> +
>>> +   /* w1c register, wait unit clear */
>>> +   ret = readl_poll_timeout(f->iobase + FSPI_MCR0, reg,
>>> +                            !(reg & l_mask), 0, POLL_TOUT_US);
>>
>> It would be better to add a parameter to fspi_readl_poll_tout() for 
>> inverting the
>> break condition and then reuse this function here.
>>
> Ok
> 
>>> +   WARN_ON(ret);
>>> +}
>>> +
>>> +static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
>>> +                            const struct spi_mem_op *op)
>>> +{
>>> +   void __iomem *base = f->iobase;
>>> +   u32 lutval[4] = {};
>>> +   int lutidx = 1, i;
>>> +
>>> +   /* cmd */
>>> +   lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
>>> +                        op->cmd.opcode);
>>> +
>>> +   /* addr bus width */
>>> +   if (op->addr.nbytes) {
>>> +           u32 addrlen = 0;
>>> +
>>> +           if (op->addr.nbytes == 3)
>>> +                   addrlen = ADDR24BIT;
>>> +           else if (op->addr.nbytes == 4)
>>> +                   addrlen = ADDR32BIT;
>>
>> I know we already had this  discussion with Boris on v2, but if you keep only
>> supporting 3 and 4 byte adresses, then it should be documented somewhere to
>> let people know that this driver can't be used to interface SPI NAND and 
>> other
>> flash chips that use deviant address widths.
>>
>> An even better solution would be to make this work somehow. I can't see why
>> the approach from the QSPI driver using LUT_MODE shouldn't work, but who
>> knows...
> Working of LUT_MODE in place of LUT_ADDR in QSPI when passing information of 
> address might be an QuadSPI controller issue.
> I have tried using LUT_MODE for this controller and it didn't work.
> Discussed with HW IP owner of FlexSPI controller and they said we need to 
> pass LUT_ADDR when programming for address length.
> 
>>
>> It's a pity, that the designers of the new IP still did not really take SPI 
>> NAND into
>> account.
>>
> This controller works for the NAND flash as well. In SW, for now my driver 
> has been validated only for the NOR flash devices and thus I have added 
> support for 3 and 4 bytes in code.
> Idea, was to modify the driver code when NAND device being verified using 
> this driver.
> Meanwhile, I can add switch case for address bytes of length 1, 2, 3 and 4 
> instead of just 3 and 4.
> 
>>> +
>>> +           lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
>>> +                                         LUT_PAD(op->addr.buswidth),
>>> +                                         addrlen);
>>> +           lutidx++;
>>> +   }
>>> +
>>> +   /* dummy bytes, if needed */
>>> +   if (op->dummy.nbytes) {
>>> +           lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
>>> +           /*
>>> +            * Due to FlexSPI controller limitation number of PAD for
>> dummy
>>> +            * buswidth needs to be programmed as equal to data buswidth.
>>> +            */
>>> +                                         LUT_PAD(op->data.buswidth),
>>
>> This seems like a hack for something that should be better handled by the spi
>> mem layer. I think you should have a check for data.buswidth ==
>> dummy.buswidth in nxp_fspi_supports_op() and if that fails the spi mem layer
>> must find a working fallback. But I'm not sure, so we probably need to ask 
>> Boris.
>>
> This is an issue with the controller and would be published in the 
> documentation in upcoming revision.
> In any of the 1-1-x mode, needs to be pass dummy information on single PAD 
> but due to clock control issue, both controller and flash device start taking 
> control of the data line and hence data gets corrupted.
> This has been identified and been suggested to use PAD information for dummy 
> same as Data PAD for case of 1-1-x protocols.
> This would going to be updated in the next release document of the controller.
> 
>>> +                                         op->dummy.nbytes * 8 /
>>> +                                         op->dummy.buswidth);
>>> +           lutidx++;
>>> +   }
>>> +
>>> +   /* read/write data bytes */
>>> +   if (op->data.nbytes) {
>>> +           lutval[lutidx / 2] |= LUT_DEF(lutidx,
>>> +                                         op->data.dir ==
>> SPI_MEM_DATA_IN ?
> Yes, data is coming from SPI memory i.e. read operation
> @SPI_MEM_DATA_IN: data coming from the SPI memory

There was no comment here from my side. The question mark is the ternary 
operator here ;)

> 
>>> +                                         LUT_NXP_READ : LUT_NXP_WRITE,
>>> +                                         LUT_PAD(op->data.buswidth),
>>> +                                         0);
>>> +           lutidx++;
>>> +   }
>>> +
>>> +   /* stop condition. */
>>> +   lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
>>> +
>>> +   /* unlock LUT */
>>> +   f->write(FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
>>> +   f->write(FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
>>> +
>>> +   /* fill LUT */
>>> +   for (i = 0; i < ARRAY_SIZE(lutval); i++)
>>> +           f->write(lutval[i], base + FSPI_LUT_REG(i));
>>> +
>>> +   dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
>>> +           op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
>>> +
>>> +   /* lock LUT */
>>> +   f->write(FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
>>> +   f->write(FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); }
>>> +
>>> +static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) {
>>> +   int ret;
>>> +
>>> +   ret = clk_prepare_enable(f->clk_en);
>>> +   if (ret)
>>> +           return ret;
>>> +
>>> +   ret = clk_prepare_enable(f->clk);
>>> +   if (ret) {
>>> +           clk_disable_unprepare(f->clk_en);
>>> +           return ret;
>>> +   }
>>> +
>>> +   return 0;
>>> +}
>>> +
>>> +static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) {
>>> +   clk_disable_unprepare(f->clk);
>>> +   clk_disable_unprepare(f->clk_en);
>>> +}
>>> +
>>> +/*
>>> + * In FlexSPI controller, flash access is based on value of
>>> +FSPI_FLSHXXCR0
>>> + * register and start base address of the slave device.
>>> + *
>>> + *                                                     (Higher address)
>>> + *                         --------    <-- FLSHB2CR0
>>> + *                         |  B2  |
>>> + *                         |      |
>>> + * B2 start address -->    --------    <-- FLSHB1CR0
>>> + *                         |  B1  |
>>> + *                         |      |
>>> + * B1 start address -->    --------    <-- FLSHA2CR0
>>> + *                         |  A2  |
>>> + *                         |      |
>>> + * A2 start address -->    --------    <-- FLSHA1CR0
>>> + *                         |  A1  |
>>> + *                         |      |
>>> + * A1 start address -->    --------                    (Lower address)
>>> + *
>>> + *
>>> + * Start base address defines the starting address range for given CS
>>> +and
>>> + * FSPI_FLSHXXCR0 defines the size of the slave device connected at given 
>>> CS.
>>> + *
>>> + * But, different targets are having different combinations of number
>>> +of CS,
>>> + * some targets only have single CS or two CS covering controller's
>>> +full
>>> + * memory mapped space area.
>>> + * Thus, implementation is being done as independent of the size and
>>> +number
>>> + * of the connected slave device.
>>> + * Assign controller memory mapped space size as the size to the
>>> +connected
>>> + * slave device.
>>> + * Mark FLSHxxCR0 as zero initially and then assign value only to the
>>> +selected
>>> + * chip-select Flash configuration register.
>>> + *
>>> + * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to
>>> +the
>>> + * memory mapped size of the controller.
>>> + * Value for rest of the CS FLSHxxCR0 register would be zero.
>>> + *
>>> + */
>>> +static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device
>>> +*spi) {
>>> +   unsigned long rate = spi->max_speed_hz;
>>> +   int ret;
>>> +   uint64_t size_kb;
>>> +
>>> +   /*
>>> +    * Return, if previously selected slave device is same as current
>>> +    * requested slave device.
>>> +    */
>>> +   if (f->selected == spi->chip_select)
>>> +           return;
>>> +
>>> +   /* Reset FLSHxxCR0 registers */
>>> +   f->write(0, f->iobase + FSPI_FLSHA1CR0);
>>> +   f->write(0, f->iobase + FSPI_FLSHA2CR0);
>>> +   f->write(0, f->iobase + FSPI_FLSHB1CR0);
>>> +   f->write(0, f->iobase + FSPI_FLSHB2CR0);
>>> +
>>> +   /* Assign controller memory mapped space as size, KBytes, of flash. */
>>> +   size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
>>> +
>>> +   switch (spi->chip_select) {
>>> +   case 0:
>>> +           f->write(size_kb, f->iobase + FSPI_FLSHA1CR0);
>>> +           break;
>>> +   case 1:
>>> +           f->write(size_kb, f->iobase + FSPI_FLSHA2CR0);
>>> +           break;
>>> +   case 2:
>>> +           f->write(size_kb, f->iobase + FSPI_FLSHB1CR0);
>>> +           break;
>>> +   case 3:
>>> +           f->write(size_kb, f->iobase + FSPI_FLSHB2CR0);
>>> +           break;
>>> +   default:
>>> +           dev_err(f->dev, "In-correct CS provided\n");
>>> +           return;
>>> +   }
>>> +
>>> +   dev_dbg(f->dev, "Slave device [CS:%x] selected\n",
>>> +spi->chip_select);
>>> +
>>> +   nxp_fspi_clk_disable_unprep(f);
>>> +
>>> +   ret = clk_set_rate(f->clk, rate);
>>> +   if (ret)
>>> +           return;
>>> +
>>> +   ret = nxp_fspi_clk_prep_enable(f);
>>> +   if (ret)
>>> +           return;
>>> +   f->selected = spi->chip_select;
>>> +}
>>> +
>>> +static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct
>>> +spi_mem_op *op) {
>>> +   u32 len = op->data.nbytes;
>>> +
>>> +   /* Read out the data directly from the AHB buffer. */
>>> +   memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len); }
>>> +
>>> +static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
>>> +                            const struct spi_mem_op *op)
>>> +{
>>> +   void __iomem *base = f->iobase;
>>> +   int i, j, ret;
>>> +   int size, tmp_size, wm_size;
>>> +   u32 data = 0, reg;
>>> +   u32 *txbuf = (u32 *) op->data.buf.out;
>>> +
>>> +   /* clear the TX FIFO. */
>>> +   f->write(FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
>>> +
>>> +   /* Default value of water mark level is 8 bytes. */
>>> +   wm_size = 8;
>>> +   size = op->data.nbytes / wm_size;
>>> +   for (i = 0; i < size; i++) {
>>> +           /* Wait for TXFIFO empty */
>>> +           ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, reg,
>>> +                                      FSPI_INTR_IPTXWE, 0,
>> POLL_TOUT_US);
>>> +           WARN_ON(ret);
>>> +
>>> +           j = 0;
>>> +           tmp_size = wm_size;
>>> +           while (tmp_size > 0) {
>>> +                   data = 0;
>>> +                   memcpy(&data, txbuf, 4);
>>> +                   f->write(data, base + FSPI_TFDR + j * 4);
>>> +                   tmp_size -= 4;
>>> +                   j++;
>>> +                   txbuf += 1;
>>> +           }
>>> +           f->write(FSPI_INTR_IPTXWE, base + FSPI_INTR);
>>> +   }
>>> +
>>> +   size = op->data.nbytes % wm_size;
>>> +   if (size) {
>>> +           /* Wait for TXFIFO empty */
>>> +           ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, reg,
>>> +                                      FSPI_INTR_IPTXWE, 0,
>> POLL_TOUT_US);
>>> +           WARN_ON(ret);
>>> +
>>> +           j = 0;
>>> +           tmp_size = 0;
>>> +           while (size > 0) {
>>> +                   data = 0;
>>> +                   tmp_size = (size < 4) ? size : 4;
>>> +                   memcpy(&data, txbuf, tmp_size);
>>> +                   f->write(data, base + FSPI_TFDR + j * 4);
>>> +                   size -= tmp_size;
>>> +                   j++;
>>> +                   txbuf += 1;
>>> +           }
>>> +           f->write(FSPI_INTR_IPTXWE, base + FSPI_INTR);
>>> +   }
>>> +}
>>> +
>>> +static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
>>> +                     const struct spi_mem_op *op)
>>> +{
>>> +   void __iomem *base = f->iobase;
>>> +   int i, j;
>>> +   int size, tmp_size, wm_size, ret;
>>> +   u32 tmp = 0, reg;
>>> +   u8 *buf = op->data.buf.in;
>>> +   u32 len = op->data.nbytes;
>>> +
>>> +   /* Default value of water mark level is 8 bytes. */
>>> +   wm_size = 8;
>>> +
>>> +   while (len > 0) {
>>> +           size = len / wm_size;
>>> +
>>> +           for (i = 0; i < size; i++) {
>>> +                   /* Wait for RXFIFO available */
>>> +                   ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
>>> +                                              reg, FSPI_INTR_IPRXWA,
>>> +                                              0, POLL_TOUT_US);
>>> +                   WARN_ON(ret);
>>> +
>>> +                   j = 0;
>>> +                   tmp_size = wm_size;
>>> +                   while (tmp_size > 0) {
>>> +                           tmp = 0;
>>> +                           tmp = f->read(base + FSPI_RFDR + j * 4);
>>> +                           memcpy(buf, &tmp, 4);
>>> +                           tmp_size -= 4;
>>> +                           j++;
>>> +                           buf += 4;
>>> +                   }
>>> +                   /* move the FIFO pointer */
>>> +                   f->write(FSPI_INTR_IPRXWA, base + FSPI_INTR);
>>> +                   len -= wm_size;
>>> +           }
>>> +
>>> +           size = len % wm_size;
>>> +
>>> +           j = 0;
>>> +           if (size) {
>>> +                   /* Wait for RXFIFO available */
>>> +                   ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
>>> +                                              reg, FSPI_INTR_IPRXWA,
>>> +                                              0, POLL_TOUT_US);
>>> +                   WARN_ON(ret);
>>> +
>>> +                   while (len > 0) {
>>> +                           tmp = 0;
>>> +                           size = (len < 4) ? len : 4;
>>> +                           tmp = f->read(base + FSPI_RFDR + j * 4);
>>> +                           memcpy(buf, &tmp, size);
>>> +                           len -= size;
>>> +                           j++;
>>> +                           buf += size;
>>> +                   }
>>> +           }
>>> +
>>> +           /* invalid the RXFIFO */
>>> +           f->write(FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
>>> +           /* move the FIFO pointer */
>>> +           f->write(FSPI_INTR_IPRXWA, base + FSPI_INTR);
>>> +   }
>>> +}
>>> +
>>> +static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op
>>> +*op) {
>>> +   void __iomem *base = f->iobase;
>>> +   int seqnum = 0;
>>> +   int err = 0;
>>> +   u32 reg;
>>> +
>>> +   reg = f->read(base + FSPI_IPRXFCR);
>>> +   /* invalid RXFIFO first */
>>> +   reg &= ~FSPI_IPRXFCR_DMA_EN;
>>> +   reg = reg | FSPI_IPRXFCR_CLR;
>>> +   f->write(reg, base + FSPI_IPRXFCR);
>>> +
>>> +   init_completion(&f->c);
>>> +
>>> +   f->write(op->addr.val, base + FSPI_IPCR0);
>>> +   /*
>>> +    * Always start the sequence at the same index since we update
>>> +    * the LUT at each exec_op() call. And also specify the DATA
>>> +    * length, since it's has not been specified in the LUT.
>>> +    */
>>> +   f->write(op->data.nbytes |
>>> +            (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
>>> +            (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
>>> +            base + FSPI_IPCR1);
>>> +
>>> +   /* Trigger the LUT now. */
>>> +   f->write(FSPI_IPCMD_TRG, base + FSPI_IPCMD);
>>> +
>>> +   /* Wait for the interrupt. */
>>> +   if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
>>> +           err = -ETIMEDOUT;
>>> +
>>> +   /* Invoke IP data read, if request is of data read. */
>>> +   if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
>>> +           nxp_fspi_read_rxfifo(f, op);
>>> +
>>> +   return err;
>>> +}
>>> +
>>> +static int nxp_fspi_exec_op(struct spi_mem *mem, const struct
>>> +spi_mem_op *op) {
>>> +   struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
>>> +   void __iomem *base = f->iobase;
>>> +   int err = 0;
>>> +   u32 status;
>>> +
>>> +   mutex_lock(&f->lock);
>>> +
>>> +   /* Wait for controller being ready. */
>>> +   status = f->read(base + FSPI_STS0);
>>> +   err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, status,
>>> +                              FSPI_STS0_ARB_IDLE, 1, POLL_TOUT_US);
>>> +   WARN_ON(err);
>>> +
>>> +   nxp_fspi_select_mem(f, mem->spi);
>>> +
>>> +   nxp_fspi_prepare_lut(f, op);
>>> +   /*
>>> +    * If we have large chunks of data, we read them through the AHB bus
>>> +    * by accessing the mapped memory. In all other cases we use
>>> +    * IP commands to access the flash.
>>> +    */
>>> +   if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
>>> +       op->data.dir == SPI_MEM_DATA_IN) {
>>> +           nxp_fspi_read_ahb(f, op);
>>> +   } else {
>>> +           if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
>>> +                   nxp_fspi_fill_txfifo(f, op);
>>> +
>>> +           err = nxp_fspi_do_op(f, op);
>>> +
>>> +           /* Invalidate the data in the AHB buffer. */
>>> +           if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
>>> +                   nxp_fspi_invalid(f);
>>> +   }
>>> +
>>> +   mutex_unlock(&f->lock);
>>> +
>>> +   return err;
>>> +}
>>> +
>>> +static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct
>>> +spi_mem_op *op) {
>>> +   struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
>>> +
>>> +   if (op->data.dir == SPI_MEM_DATA_OUT) {
>>> +           if (op->data.nbytes > f->devtype_data->txfifo)
>>> +                   op->data.nbytes = f->devtype_data->txfifo;
>>> +   } else {
>>> +           if (op->data.nbytes > f->devtype_data->ahb_buf_size)
>>> +                   op->data.nbytes = f->devtype_data->ahb_buf_size;
>>> +           else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
>>> +                   op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
>>> +   }
>>> +
>>> +   return 0;
>>> +}
>>> +
>>> +static int nxp_fspi_default_setup(struct nxp_fspi *f) {
>>> +   void __iomem *base = f->iobase;
>>> +   int ret, i;
>>> +   u32 reg, l_mask;
>>> +
>>> +   /* disable and unprepare clock to avoid glitch pass to controller */
>>> +   nxp_fspi_clk_disable_unprep(f);
>>> +
>>> +   /* the default frequency, we will change it later if necessary. */
>>> +   ret = clk_set_rate(f->clk, 20000000);
>>> +   if (ret)
>>> +           return ret;
>>> +
>>> +   ret = nxp_fspi_clk_prep_enable(f);
>>> +   if (ret)
>>> +           return ret;
>>> +
>>> +   /* Reset the module */
>>> +   f->write(FSPI_MCR0_SWRST, base + FSPI_MCR0);
>>> +
>>> +   if (f->devtype_data->little_endian)
>>> +           l_mask = FSPI_MCR0_SWRST;
>>> +   else
>>> +           l_mask = (u32)cpu_to_be32(FSPI_MCR0_SWRST);
>>> +
>>> +   /* w1c register, wait unit clear */
>>> +   ret = readl_poll_timeout(f->iobase + FSPI_MCR0, reg,
>>> +                            !(reg & l_mask), 0, POLL_TOUT_US);
>>
>> See above. Reuse fspi_readl_poll_tout() here.
>>
> Ok
> 
>> Regards,
>> Frieder
>>
>>> +   WARN_ON(ret);
>>> +
>>> +   /* Disable the module */
>>> +   f->write(FSPI_MCR0_MDIS, base + FSPI_MCR0);
>>> +
>>> +   /* Reset the DLL register to default value */
>>> +   f->write(FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
>>> +   f->write(FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
>>> +
>>> +   /* enable module */
>>> +   f->write(FSPI_MCR0_AHB_TIMEOUT(0xFF) |
>> FSPI_MCR0_IP_TIMEOUT(0xFF),
>>> +            base + FSPI_MCR0);
>>> +
>>> +   /*
>>> +    * Disable same device enable bit and configure all slave devices
>>> +    * independently.
>>> +    */
>>> +   reg = f->read(f->iobase + FSPI_MCR2);
>>> +   reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
>>> +   f->write(reg, base + FSPI_MCR2);
>>> +
>>> +   /* AHB configuration for access buffer 0~7. */
>>> +   for (i = 0; i < 7; i++)
>>> +           f->write(0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
>>> +
>>> +   /*
>>> +    * Set ADATSZ with the maximum AHB buffer size to improve the read
>>> +    * performance.
>>> +    */
>>> +   f->write((f->devtype_data->ahb_buf_size / 8 |
>>> +             FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
>>> +
>>> +   /* prefetch and no start address alignment limitation */
>>> +   f->write(FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
>>> +            base + FSPI_AHBCR);
>>> +
>>> +   /* AHB Read - Set lut sequence ID for all CS. */
>>> +   f->write(SEQID_LUT, base + FSPI_FLSHA1CR2);
>>> +   f->write(SEQID_LUT, base + FSPI_FLSHA2CR2);
>>> +   f->write(SEQID_LUT, base + FSPI_FLSHB1CR2);
>>> +   f->write(SEQID_LUT, base + FSPI_FLSHB2CR2);
>>> +
>>> +   f->selected = -1;
>>> +
>>> +   /* enable the interrupt */
>>> +   f->write(FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
>>> +
>>> +   return 0;
>>> +}
>>> +
>>> +static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
>>> +   .adjust_op_size = nxp_fspi_adjust_op_size,
>>> +   .supports_op = nxp_fspi_supports_op,
>>> +   .exec_op = nxp_fspi_exec_op,
>>> +};
>>> +
>>> +static int nxp_fspi_probe(struct platform_device *pdev) {
>>> +   struct spi_controller *ctlr;
>>> +   struct device *dev = &pdev->dev;
>>> +   struct device_node *np = dev->of_node;
>>> +   struct resource *res;
>>> +   struct nxp_fspi *f;
>>> +   int ret;
>>> +
>>> +   ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
>>> +   if (!ctlr)
>>> +           return -ENOMEM;
>>> +
>>> +   ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
>>> +                     SPI_TX_DUAL | SPI_TX_QUAD;
>>> +
>>> +   f = spi_controller_get_devdata(ctlr);
>>> +   f->dev = dev;
>>> +   f->devtype_data = of_device_get_match_data(dev);
>>> +   if (!f->devtype_data) {
>>> +           ret = -ENODEV;
>>> +           goto err_put_ctrl;
>>> +   }
>>> +
>>> +   platform_set_drvdata(pdev, f);
>>> +
>>> +   /* find the resources - configuration register address space */
>>> +   res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
>> "fspi_base");
>>> +   f->iobase = devm_ioremap_resource(dev, res);
>>> +   if (IS_ERR(f->iobase)) {
>>> +           ret = PTR_ERR(f->iobase);
>>> +           goto err_put_ctrl;
>>> +   }
>>> +
>>> +   /* find the resources - controller memory mapped space */
>>> +   res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
>> "fspi_mmap");
>>> +   f->ahb_addr = devm_ioremap_resource(dev, res);
>>> +   if (IS_ERR(f->ahb_addr)) {
>>> +           ret = PTR_ERR(f->ahb_addr);
>>> +           goto err_put_ctrl;
>>> +   }
>>> +
>>> +   /* assign memory mapped starting address and mapped size. */
>>> +   f->memmap_phy = res->start;
>>> +   f->memmap_phy_size = resource_size(res);
>>> +
>>> +   /* find the clocks */
>>> +   f->clk_en = devm_clk_get(dev, "fspi_en");
>>> +   if (IS_ERR(f->clk_en)) {
>>> +           ret = PTR_ERR(f->clk_en);
>>> +           goto err_put_ctrl;
>>> +   }
>>> +
>>> +   f->clk = devm_clk_get(dev, "fspi");
>>> +   if (IS_ERR(f->clk)) {
>>> +           ret = PTR_ERR(f->clk);
>>> +           goto err_put_ctrl;
>>> +   }
>>> +
>>> +   /*
>>> +    * R/W functions for big- or little-endian registers:
>>> +    * The FSPI controller's endianness is independent of
>>> +    * the CPU core's endianness. So far, although the CPU
>>> +    * core is little-endian the FSPI controller can use
>>> +    * big-endian or little-endian.
>>> +    */
>>> +   if (f->devtype_data->little_endian) {
>>> +           f->write = fspi_writel;
>>> +           f->read = fspi_readl;
>>> +   } else {
>>> +           f->write = fspi_writel_be;
>>> +           f->read = fspi_readl_be;
>>> +   }
>>> +
>>> +   ret = nxp_fspi_clk_prep_enable(f);
>>> +   if (ret) {
>>> +           dev_err(dev, "can not enable the clock\n");
>>> +           goto err_put_ctrl;
>>> +   }
>>> +
>>> +   /* find the irq */
>>> +   ret = platform_get_irq(pdev, 0);
>>> +   if (ret < 0) {
>>> +           dev_err(dev, "failed to get the irq: %d\n", ret);
>>> +           goto err_disable_clk;
>>> +   }
>>> +
>>> +   ret = devm_request_irq(dev, ret,
>>> +                   nxp_fspi_irq_handler, 0, pdev->name, f);
>>> +   if (ret) {
>>> +           dev_err(dev, "failed to request irq: %d\n", ret);
>>> +           goto err_disable_clk;
>>> +   }
>>> +
>>> +   mutex_init(&f->lock);
>>> +
>>> +   ctlr->bus_num = -1;
>>> +   ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
>>> +   ctlr->mem_ops = &nxp_fspi_mem_ops;
>>> +
>>> +   nxp_fspi_default_setup(f);
>>> +
>>> +   ctlr->dev.of_node = np;
>>> +
>>> +   ret = spi_register_controller(ctlr);
>>> +   if (ret)
>>> +           goto err_destroy_mutex;
>>> +
>>> +   return 0;
>>> +
>>> +err_destroy_mutex:
>>> +   mutex_destroy(&f->lock);
>>> +
>>> +err_disable_clk:
>>> +   nxp_fspi_clk_disable_unprep(f);
>>> +
>>> +err_put_ctrl:
>>> +   spi_controller_put(ctlr);
>>> +
>>> +   dev_err(dev, "NXP FSPI probe failed\n");
>>> +   return ret;
>>> +}
>>> +
>>> +static int nxp_fspi_remove(struct platform_device *pdev) {
>>> +   struct nxp_fspi *f = platform_get_drvdata(pdev);
>>> +
>>> +   /* disable the hardware */
>>> +   f->write(FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
>>> +
>>> +   nxp_fspi_clk_disable_unprep(f);
>>> +
>>> +   mutex_destroy(&f->lock);
>>> +
>>> +   return 0;
>>> +}
>>> +
>>> +static int nxp_fspi_suspend(struct device *dev) {
>>> +   return 0;
>>> +}
>>> +
>>> +static int nxp_fspi_resume(struct device *dev) {
>>> +   struct nxp_fspi *f = dev_get_drvdata(dev);
>>> +
>>> +   nxp_fspi_default_setup(f);
>>> +
>>> +   return 0;
>>> +}
>>> +
>>> +static const struct of_device_id nxp_fspi_dt_ids[] = {
>>> +   { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
>>> +   { /* sentinel */ }
>>> +};
>>> +MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
>>> +
>>> +static const struct dev_pm_ops nxp_fspi_pm_ops = {
>>> +   .suspend        = nxp_fspi_suspend,
>>> +   .resume         = nxp_fspi_resume,
>>> +};
>>> +
>>> +static struct platform_driver nxp_fspi_driver = {
>>> +   .driver = {
>>> +           .name   = "nxp-fspi",
>>> +           .of_match_table = nxp_fspi_dt_ids,
>>> +           .pm =   &nxp_fspi_pm_ops,
>>> +   },
>>> +   .probe          = nxp_fspi_probe,
>>> +   .remove         = nxp_fspi_remove,
>>> +};
>>> +module_platform_driver(nxp_fspi_driver);
>>> +
>>> +MODULE_DESCRIPTION("NXP FSPI Controller Driver");
>> MODULE_AUTHOR("NXP
>>> +Semiconductor"); MODULE_LICENSE("GPL v2");
>>>

Reply via email to