This patch includes "gsi.c", which implements the generic software
interface (GSI) for IPA.  The generic software interface abstracts
channels, which provide a means of transferring data either from the
AP to the IPA, or from the IPA to the AP.  A ring buffer of "transfer
elements" (TREs) is used to describe data transfers to perform.  The
AP writes a doorbell register associated with a channel to let it know
it has added new entries (for an AP->IPA channel) or has finished
processing entries (for an IPA->AP channel).

Each channel also has an event ring buffer, used by the IPA to
communicate information about events related to a channel (for
example, the completion of TREs).  The IPA writes its own doorbell
register, which triggers an interrupt on the AP, to signal that
new event information has arrived.

Signed-off-by: Alex Elder <el...@linaro.org>
---
 drivers/net/ipa/gsi.c | 1741 +++++++++++++++++++++++++++++++++++++++++
 1 file changed, 1741 insertions(+)
 create mode 100644 drivers/net/ipa/gsi.c

diff --git a/drivers/net/ipa/gsi.c b/drivers/net/ipa/gsi.c
new file mode 100644
index 000000000000..e9dd40c058c6
--- /dev/null
+++ b/drivers/net/ipa/gsi.c
@@ -0,0 +1,1741 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
+ * Copyright (C) 2018-2019 Linaro Ltd.
+ */
+
+#include <linux/types.h>
+#include <linux/bits.h>
+#include <linux/bitfield.h>
+#include <linux/spinlock.h>
+#include <linux/mutex.h>
+#include <linux/completion.h>
+#include <linux/io.h>
+#include <linux/bug.h>
+#include <linux/interrupt.h>
+#include <linux/platform_device.h>
+#include <linux/netdevice.h>
+
+#include "gsi.h"
+#include "gsi_reg.h"
+#include "gsi_private.h"
+#include "gsi_trans.h"
+#include "ipa_gsi.h"
+#include "ipa_data.h"
+
+/**
+ * DOC: The IPA Generic Software Interface
+ *
+ * The generic software interface (GSI) is an integral component of the IPA,
+ * providing a well-defined communication layer between the AP subsystem
+ * and the IPA core.  The modem uses the GSI layer as well.
+ *
+ *     --------             ---------
+ *     |      |             |       |
+ *     |  AP  +<---.   .----+ Modem |
+ *     |      +--. |   | .->+       |
+ *     |      |  | |   | |  |       |
+ *     --------  | |   | |  ---------
+ *               v |   v |
+ *             --+-+---+-+--
+ *             |    GSI    |
+ *             |-----------|
+ *             |           |
+ *             |    IPA    |
+ *             |           |
+ *             -------------
+ *
+ * In the above diagram, the AP and Modem represent "execution environments"
+ * (EEs), which are independent operating environments that use the IPA for
+ * data transfer.
+ *
+ * Each EE uses a set of unidirectional GSI "channels," which allow transfer
+ * of data to or from the IPA.  A channel is implemented as a ring buffer,
+ * with a DRAM-resident array of "transfer elements" (TREs) available to
+ * describe transfers to or from other EEs through the IPA.  A transfer
+ * element can also contain an immediate command, requesting the IPA perform
+ * actions other than data transfer.
+ *
+ * Each TRE refers to a block of data--also located DRAM.  After writing one
+ * or more TREs to a channel, the writer (either the IPA or an EE) writes a
+ * doorbell register to inform the receiving side how many elements have
+ * been written.  Writing to a doorbell register triggers an interrupt on
+ * the receiver.
+ *
+ * Each channel has a GSI "event ring" associated with it.  An event ring
+ * is implemented very much like a channel ring, but is always directed from
+ * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
+ * events by adding an entry to the event ring associated with the channel;
+ * when it writes the event ring's doorbell register the EE is interrupted.
+ * Each entry in an event ring contains a pointer to the channel TRE whose
+ * completion the event represents.
+ *
+ * Each TRE in a channel ring has a set of flags.  One flag indicates whether
+ * the completion of the transfer operation generates an entry (and possibly
+ * an interrupt) in the channel's event ring.  Oother flags allow transfer
+ * elements to be chained together, forming a single logical transaction.
+ * TRE flags are used to control whether and when interrupts are generated
+ * to signal completion of channel transfers.
+ *
+ * Elements in channel and event rings are completed (or consumed) strictly
+ * in order.  Completion of one entry implies the completion of all preceding
+ * entries.  A single completion interrupt can communicate the completion of
+ * many transfers.
+ *
+ * Note that all GSI registers are little-endian, which is the assumed
+ * endianness of I/O space accesses.  The accessor functions perform byte
+ * swapping if needed (i.e., for a big endian CPU).
+ */
+
+/* Delay period for interrupt moderation (in 32KHz IPA timer ticks) */
+#define IPA_GSI_EVT_RING_INT_MODT      (32 * 1) /* 1ms under 32KHz clock */
+
+#define GSI_CMD_TIMEOUT                5       /* seconds */
+
+#define GSI_MHI_ER_START       10      /* First reserved event number */
+#define GSI_MHI_ER_END         16      /* Last reserved event number */
+
+#define GSI_RESET_WA_MIN_SLEEP 1000    /* microseconds */
+#define GSI_RESET_WA_MAX_SLEEP 2000    /* microseconds */
+
+#define GSI_ISR_MAX_ITER       50
+
+/* Hardware values from the error log register error code field */
+enum gsi_err_code {
+       GSI_INVALID_TRE_ERR                     = 0x1,
+       GSI_OUT_OF_BUFFERS_ERR                  = 0x2,
+       GSI_OUT_OF_RESOURCES_ERR                = 0x3,
+       GSI_UNSUPPORTED_INTER_EE_OP_ERR         = 0x4,
+       GSI_EVT_RING_EMPTY_ERR                  = 0x5,
+       GSI_NON_ALLOCATED_EVT_ACCESS_ERR        = 0x6,
+       GSI_HWO_1_ERR                           = 0x8,
+};
+
+/* Hardware values from the error log register error type field */
+enum gsi_err_type {
+       GSI_ERR_TYPE_GLOB       = 0x1,
+       GSI_ERR_TYPE_CHAN       = 0x2,
+       GSI_ERR_TYPE_EVT        = 0x3,
+};
+
+/* Fields in an error log register at GSI_ERROR_LOG_OFFSET */
+#define GSI_LOG_ERR_ARG3_FMASK         GENMASK(3, 0)
+#define GSI_LOG_ERR_ARG2_FMASK         GENMASK(7, 4)
+#define GSI_LOG_ERR_ARG1_FMASK         GENMASK(11, 8)
+#define GSI_LOG_ERR_CODE_FMASK         GENMASK(15, 12)
+#define GSI_LOG_ERR_VIRT_IDX_FMASK     GENMASK(23, 19)
+#define GSI_LOG_ERR_TYPE_FMASK         GENMASK(27, 24)
+#define GSI_LOG_ERR_EE_FMASK           GENMASK(31, 28)
+
+/* Hardware values used when programming an event ring */
+enum gsi_evt_chtype {
+       GSI_EVT_CHTYPE_MHI_EV   = 0x0,
+       GSI_EVT_CHTYPE_XHCI_EV  = 0x1,
+       GSI_EVT_CHTYPE_GPI_EV   = 0x2,
+       GSI_EVT_CHTYPE_XDCI_EV  = 0x3,
+};
+
+/* Hardware values used when programming a channel */
+enum gsi_channel_protocol {
+       GSI_CHANNEL_PROTOCOL_MHI        = 0x0,
+       GSI_CHANNEL_PROTOCOL_XHCI       = 0x1,
+       GSI_CHANNEL_PROTOCOL_GPI        = 0x2,
+       GSI_CHANNEL_PROTOCOL_XDCI       = 0x3,
+};
+
+/* Hardware values representing an event ring immediate command opcode */
+enum gsi_evt_ch_cmd_opcode {
+       GSI_EVT_ALLOCATE        = 0x0,
+       GSI_EVT_RESET           = 0x9,
+       GSI_EVT_DE_ALLOC        = 0xa,
+};
+
+/* Hardware values representing a channel immediate command opcode */
+enum gsi_ch_cmd_opcode {
+       GSI_CH_ALLOCATE = 0x0,
+       GSI_CH_START    = 0x1,
+       GSI_CH_STOP     = 0x2,
+       GSI_CH_RESET    = 0x9,
+       GSI_CH_DE_ALLOC = 0xa,
+       GSI_CH_DB_STOP  = 0xb,
+};
+
+/** gsi_gpi_channel_scratch - GPI protocol scratch register
+ *
+ * @max_outstanding_tre:
+ *     Defines the maximum number of TREs allowed in a single transaction
+ *     on a channel (in Bytes).  This determines the amount of prefetch
+ *     performed by the hardware.  We configure this to equal the size of
+ *     the TLV FIFO for the channel.
+ * @outstanding_threshold:
+ *     Defines the threshold (in Bytes) determining when the sequencer
+ *     should update the channel doorbell.  We configure this to equal
+ *     the size of two TREs.
+ */
+struct gsi_gpi_channel_scratch {
+       u64 rsvd1;
+       u16 rsvd2;
+       u16 max_outstanding_tre;
+       u16 rsvd3;
+       u16 outstanding_threshold;
+} __packed;
+
+/** gsi_channel_scratch - channel scratch configuration area
+ *
+ * The exact interpretation of this register is protocol-specific.
+ * We only use GPI channels; see struct gsi_gpi_channel_scratch, above.
+ */
+union gsi_channel_scratch {
+       struct gsi_gpi_channel_scratch gpi;
+       struct {
+               u32 word1;
+               u32 word2;
+               u32 word3;
+               u32 word4;
+       } data;
+} __packed;
+
+/* Enable or disable an event interrupt */
+static void
+_gsi_irq_control_event(struct gsi *gsi, u32 evt_ring_id, bool enable)
+{
+       u32 mask = BIT(evt_ring_id);
+       u32 val;
+
+       if (enable)
+               gsi->event_enable_bitmap |= mask;
+       else
+               gsi->event_enable_bitmap &= ~mask;
+
+       val = gsi->event_enable_bitmap;
+       iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
+}
+
+static void gsi_irq_enable_event(struct gsi *gsi, u32 evt_ring_id)
+{
+       _gsi_irq_control_event(gsi, evt_ring_id, true);
+}
+
+static void gsi_irq_disable_event(struct gsi *gsi, u32 evt_ring_id)
+{
+       _gsi_irq_control_event(gsi, evt_ring_id, false);
+}
+
+/* Enable or disable all interrupt types */
+static void _gsi_irq_control_all(struct gsi *gsi, bool enable)
+{
+       u32 val;
+
+       /* Inter EE commands / interrupt are no supported. */
+       val = enable ? GSI_CNTXT_TYPE_IRQ_MSK_ALL : 0;
+       iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
+
+       val = enable ? GENMASK(GSI_CHANNEL_MAX - 1, 0) : 0;
+       iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
+
+       val = enable ? GENMASK(GSI_EVT_RING_MAX - 1, 0) : 0;
+       iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
+
+       /* IEOB interrupts are managed individually */
+       val = enable ? gsi->event_enable_bitmap : 0;
+       iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
+
+       val = enable ? GSI_CNTXT_GLOB_IRQ_ALL : 0;
+       iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
+
+       /* Never enable GSI_BREAK_POINT */
+       val = enable ? GSI_CNTXT_GSI_IRQ_ALL & ~EN_BREAK_POINT_FMASK : 0;
+       iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
+}
+
+static void gsi_irq_disable_all(struct gsi *gsi)
+{
+       _gsi_irq_control_all(gsi, false);
+}
+
+static void gsi_irq_enable_all(struct gsi *gsi)
+{
+       _gsi_irq_control_all(gsi, true);
+}
+
+/* Return the channel id associated with a given channel */
+u32 gsi_channel_id(struct gsi_channel *channel)
+{
+       return channel - &channel->gsi->channel[0];
+}
+
+/* Return the hardware's notion of the current state of a channel */
+static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
+{
+       u32 channel_id = gsi_channel_id(channel);
+       struct gsi *gsi = channel->gsi;
+       u32 val;
+
+       val = ioread32(gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
+
+       return u32_get_bits(val, CHSTATE_FMASK);
+}
+
+/* Return the hardware's notion of the current state of an event ring */
+static enum gsi_evt_ring_state
+gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
+{
+       u32 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
+
+       return u32_get_bits(val, EV_CHSTATE_FMASK);
+}
+
+/* Channel control interrupt handler */
+static void gsi_isr_chan_ctrl(struct gsi *gsi)
+{
+       u32 channel_mask;
+
+       channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
+       iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
+
+       while (channel_mask) {
+               u32 channel_id = __ffs(channel_mask);
+               struct gsi_channel *channel;
+
+               channel_mask ^= BIT(channel_id);
+
+               channel = &gsi->channel[channel_id];
+               channel->state = gsi_channel_state(channel);
+
+               complete(&channel->completion);
+       }
+}
+
+static void gsi_isr_evt_ctrl(struct gsi *gsi)
+{
+       u32 evt_mask;
+
+       evt_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
+       iowrite32(evt_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
+
+       while (evt_mask) {
+               u32 evt_ring_id = __ffs(evt_mask);
+               struct gsi_evt_ring *evt_ring;
+
+               evt_mask ^= BIT(evt_ring_id);
+
+               evt_ring = &gsi->evt_ring[evt_ring_id];
+               evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
+
+               complete(&evt_ring->completion);
+       }
+}
+
+static void
+gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
+{
+       if (code == GSI_OUT_OF_RESOURCES_ERR) {
+               dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
+               complete(&gsi->channel[channel_id].completion);
+               return;
+       }
+
+       /* Report, but otherwise ignore all other error codes */
+       WARN(true, "channel %u global error ee 0x%08x code 0x%08x\n",
+            channel_id, err_ee, code);
+}
+
+static void
+gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
+{
+       if (code == GSI_OUT_OF_RESOURCES_ERR) {
+               struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+               u32 channel_id = gsi_channel_id(evt_ring->channel);
+
+               complete(&evt_ring->completion);
+               dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
+                       channel_id);
+               return;
+       }
+
+       /* Report, but otherwise ignore all other error codes */
+       WARN(true, "event ring 0x%08x global error ee %u code 0x%08x\n",
+            evt_ring_id, err_ee, code);
+}
+
+static void gsi_isr_glob_err(struct gsi *gsi)
+{
+       enum gsi_err_type type;
+       enum gsi_err_code code;
+       u32 which;
+       u32 val;
+       u32 ee;
+
+       /* Get the logged error, then reinitialize the log */
+       val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
+       iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
+       iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
+
+       ee = u32_get_bits(val, GSI_LOG_ERR_EE_FMASK);
+       which = u32_get_bits(val, GSI_LOG_ERR_VIRT_IDX_FMASK);
+       type = u32_get_bits(val, GSI_LOG_ERR_TYPE_FMASK);
+       code = u32_get_bits(val, GSI_LOG_ERR_CODE_FMASK);
+
+       if (type == GSI_ERR_TYPE_CHAN)
+               gsi_isr_glob_chan_err(gsi, ee, which, code);
+       else if (type == GSI_ERR_TYPE_EVT)
+               gsi_isr_glob_evt_err(gsi, ee, which, code);
+       else    /* type GSI_ERR_TYPE_GLOB should be fatal */
+               WARN(true, "unexpected global error 0x%08x\n", type);
+}
+
+static void gsi_isr_glob_ee(struct gsi *gsi)
+{
+       u32 val;
+
+       val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
+
+       if (val & ERROR_INT_FMASK)
+               gsi_isr_glob_err(gsi);
+
+       iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
+
+       val ^= ERROR_INT_FMASK;
+
+       if (val & EN_GP_INT1_FMASK)
+               dev_err(gsi->dev, "unexpected global INT1\n");
+       val ^= EN_GP_INT1_FMASK;
+
+       WARN(val, "unexpected global interrupt 0x%08x\n", val);
+}
+
+/* Returns true if the interrupt state (enabled or not) changed */
+static bool gsi_channel_intr(struct gsi_channel *channel, bool enable)
+{
+       u32 evt_ring_id = channel->evt_ring_id;
+       struct gsi *gsi = channel->gsi;
+       u32 mask = BIT(evt_ring_id);
+       unsigned long flags;
+       bool different;
+       u32 enabled;
+
+       spin_lock_irqsave(&gsi->spinlock, flags);
+
+       enabled = gsi->event_enable_bitmap & mask;
+       different = enable == !enabled;
+
+       if (different) {
+               if (enabled)
+                       gsi_irq_disable_event(channel->gsi, evt_ring_id);
+               else
+                       gsi_irq_enable_event(channel->gsi, evt_ring_id);
+       }
+
+       spin_unlock_irqrestore(&gsi->spinlock, flags);
+
+       return different;
+}
+
+/* This function is almost always called in interrupt context,
+ * meaning the interrupt is enabled.  The request to disable
+ * the interrupt here will therefore "succeed", that is, it
+ * will disable an enabled interrupt.
+ *
+ * However, this function is also called when cancelling pending
+ * transactions, and when that occurs it's possible interrupts are
+ * already disabled.  For that reason we only schedule NAPI if we
+ * actually caused interrupts to become disabled.
+ */
+void gsi_event_handle(struct gsi *gsi, u32 evt_ring_id)
+{
+       struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+       struct gsi_channel *channel = evt_ring->channel;
+
+       if (gsi_channel_intr(channel, false))
+               napi_schedule(&channel->napi);
+}
+
+static void gsi_isr_ieob(struct gsi *gsi)
+{
+       u32 evt_mask;
+
+       evt_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
+       evt_mask &= ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
+       iowrite32(evt_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
+
+       while (evt_mask) {
+               u32 evt_ring_id = __ffs(evt_mask);
+
+               evt_mask ^= BIT(evt_ring_id);
+
+               gsi_event_handle(gsi, evt_ring_id);
+       }
+}
+
+static void gsi_isr_inter_ee_chan_ctrl(struct gsi *gsi)
+{
+       u32 channel_mask;
+
+       channel_mask = ioread32(gsi->virt + GSI_INTER_EE_SRC_CH_IRQ_OFFSET);
+       iowrite32(channel_mask, gsi->virt + GSI_INTER_EE_SRC_CH_IRQ_CLR_OFFSET);
+
+       while (channel_mask) {
+               u32 channel_id = __ffs(channel_mask);
+
+               /* not currently expected */
+               dev_err(gsi->dev, "ch %u inter-EE interrupt\n", channel_id);
+               channel_mask ^= BIT(channel_id);
+       }
+}
+
+static void gsi_isr_inter_ee_evt_ctrl(struct gsi *gsi)
+{
+       u32 evt_mask;
+
+       evt_mask = ioread32(gsi->virt + GSI_INTER_EE_SRC_EV_CH_IRQ_OFFSET);
+       iowrite32(evt_mask, gsi->virt + GSI_INTER_EE_SRC_EV_CH_IRQ_CLR_OFFSET);
+
+       while (evt_mask) {
+               u32 evt_ring_id = __ffs(evt_mask);
+
+               /* not currently expected */
+               dev_err(gsi->dev, "evt %u inter-EE interrupt\n", evt_ring_id);
+               evt_mask ^= BIT(evt_ring_id);
+       }
+}
+
+static void gsi_isr_general(struct gsi *gsi)
+{
+       u32 val;
+
+       val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
+       iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
+
+       if (val & CLR_BREAK_POINT_FMASK)
+               dev_err(gsi->dev, "breakpoint!\n");
+       val ^= CLR_BREAK_POINT_FMASK;
+
+       WARN(val, "unexpected general interrupt 0x%08x\n", val);
+}
+
+/**
+ * gsi_isr() - Top level GSI interrupt service routine
+ * @irq:       Interrupt number (ignored)
+ * @dev_id:    Device id pointer supplied to request_irq()
+ *
+ * This is the main handler function registered for the GSI IRQ.  The
+ * GSI pointer is supplied as the "device id" value when the handler
+ * is registered, and is provided here.  Each type of interrupt has a
+ * separate handler function that is called from here.
+ */
+static irqreturn_t gsi_isr(int irq, void *dev_id)
+{
+       struct gsi *gsi = dev_id;
+       u32 intr_mask;
+       u32 cnt = 0;
+
+       while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
+               /* intr_mask contains bitmask of pending GSI interrupts */
+               do {
+                       u32 gsi_intr = BIT(__ffs(intr_mask));
+
+                       intr_mask ^= gsi_intr;
+
+                       switch (gsi_intr) {
+                       case CH_CTRL_FMASK:
+                               gsi_isr_chan_ctrl(gsi);
+                               break;
+                       case EV_CTRL_FMASK:
+                               gsi_isr_evt_ctrl(gsi);
+                               break;
+                       case GLOB_EE_FMASK:
+                               gsi_isr_glob_ee(gsi);
+                               break;
+                       case IEOB_FMASK:
+                               gsi_isr_ieob(gsi);
+                               break;
+                       case INTER_EE_CH_CTRL_FMASK:
+                               gsi_isr_inter_ee_chan_ctrl(gsi);
+                               break;
+                       case INTER_EE_EV_CTRL_FMASK:
+                               gsi_isr_inter_ee_evt_ctrl(gsi);
+                               break;
+                       case GENERAL_FMASK:
+                               gsi_isr_general(gsi);
+                               break;
+                       default:
+                               WARN(true, "%s: unrecognized type 0x%08x\n",
+                                    __func__, gsi_intr);
+                               break;
+                       }
+               } while (intr_mask);
+
+               if (WARN(++cnt > GSI_ISR_MAX_ITER, "interrupt flood\n"))
+                       break;
+       }
+
+       return IRQ_HANDLED;
+}
+
+/* Return the virtual address associated with a 32-bit ring offset */
+void *gsi_ring_virt(struct gsi_ring *ring, u32 offset)
+{
+       return ring->virt + (offset - ring->base);
+}
+
+/* Return the ring index of a 32-bit ring offset */
+u32 ring_index(struct gsi_ring *ring, u32 offset)
+{
+       /* Code assumes channel and event ring elements are the same size */
+       BUILD_BUG_ON(sizeof(struct gsi_tre) !=
+                    sizeof(struct gsi_xfer_compl_evt));
+
+       return (offset - ring->base) / sizeof(struct gsi_tre);
+}
+
+/* Return the 32-bit ring offset that precedes the one at the given offset */
+static u32 ring_prev(struct gsi_ring *ring, u32 offset)
+{
+       if (offset == ring->base)
+               offset = ring->end;
+
+       return offset - sizeof(struct gsi_tre);
+}
+
+/* Advance a ring's local write pointer by the given number of slots */
+void gsi_ring_wp_local_add(struct gsi_ring *ring, u32 val)
+{
+       ring->wp_local += val * sizeof(struct gsi_tre);
+       if (ring->wp_local >= ring->end)
+               ring->wp_local -= ring->size;
+}
+
+/* Advance a ring's local read pointer by the given number of slots */
+static void gsi_ring_rp_local_add(struct gsi_ring *ring, u32 val)
+{
+       ring->rp_local += val * sizeof(struct gsi_tre);
+       if (ring->rp_local == ring->end)
+               ring->rp_local -= ring->size;
+}
+
+static void __gsi_evt_tx_update(struct gsi_evt_ring *evt_ring, u32 rp)
+{
+       struct gsi_channel *channel = evt_ring->channel;
+       struct gsi_ring *ring = &evt_ring->ring;
+       struct gsi_xfer_compl_evt *evt;
+       struct gsi_trans *first_trans;
+       struct gsi_trans *last_trans;
+       u32 trans_count;
+       u32 byte_count;
+       u32 tre_offset;
+       u32 tre_index;
+
+       /* Get the first (oldest) un-processed event */
+       evt = gsi_ring_virt(ring, ring->rp_local);
+       /* Get the TRE offset from that, and its associated transaction */
+       tre_offset = le64_to_cpu(evt->xfer_ptr) & GENMASK(31, 0);
+       tre_index = ring_index(&channel->tre_ring, tre_offset);
+       first_trans = gsi_channel_trans_mapped(channel, tre_index);
+
+       /* Get the last (newest) un-processed event */
+       evt = gsi_ring_virt(ring, ring_prev(ring, rp));
+       /* Get the TRE offset from that, and its associated transaction */
+       tre_offset = le64_to_cpu(evt->xfer_ptr) & GENMASK(31, 0);
+       tre_index = ring_index(&channel->tre_ring, tre_offset);
+       last_trans = gsi_channel_trans_mapped(channel, tre_index);
+
+       /* Report the total number of transactions and bytes that have
+        * been transferred, *including* the last one.
+        */
+       trans_count = last_trans->trans_count - first_trans->trans_count + 1;
+       byte_count = last_trans->byte_count - first_trans->byte_count;
+       byte_count += last_trans->len;
+
+       ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
+                                    trans_count, byte_count);
+}
+
+/**
+ * __gsi_evt_rx_update() - Record lengths of received data
+ * @evt_ring:  Event ring associated with channel that received packets
+ * @ep:                Last event in the ring associated with a completed 
request
+ *
+ * Events for RX channels contain the actual number of bytes received into
+ * the buffer.  Every event has a transaction associated with it, and here
+ * we update each transaction's result code to record the received length.
+ *
+ * This function is called whenever we learn that the GSI hardware has filled
+ * new events since the last time we checked.  We need to update transaction
+ * lengths for events starting at the ring's rp_local up to (and including)
+ * the ring offset supplied as an argument.
+ *
+ * Events are sequential within the event ring, and transactions are
+ * sequential within the transaction pool.  We compute the first event's
+ * transaction pointer; the next event's transaction will just next one in
+ * the transaction pool.
+ *
+ * Note that @rp always points to an element *within* the event ring.
+ */
+static void __gsi_evt_rx_update(struct gsi_evt_ring *evt_ring, u32 rp)
+{
+       struct gsi_channel *channel = evt_ring->channel;
+       struct gsi_ring *ring = &evt_ring->ring;
+       struct gsi_xfer_compl_evt *evt_last;
+       struct gsi_xfer_compl_evt *evt_end;
+       struct gsi_trans_info *trans_info;
+       struct gsi_xfer_compl_evt *evt;
+       struct gsi_trans *trans_end;
+       struct gsi_trans *trans;
+       u32 byte_count = 0;
+       u32 tre_offset;
+       u32 tre_index;
+
+       /* Start with the first un-processed event */
+       evt = gsi_ring_virt(ring, ring->rp_local);
+       evt_last = gsi_ring_virt(ring, rp);
+       evt_end = gsi_ring_virt(ring, ring->end);
+
+       /* Event xfer_ptr records the TRE it's associated with */
+       tre_offset = le64_to_cpu(evt->xfer_ptr) & GENMASK(31, 0);
+       tre_index = ring_index(&channel->tre_ring, tre_offset);
+       /* Get the transaction mapped to the first unprocessed event */
+       trans = gsi_channel_trans_mapped(channel, tre_index);
+       trans_info = &channel->trans_info;
+       trans_end = &trans_info->pool[trans_info->pool_count];
+
+       do {
+               trans->len = __le16_to_cpu(evt->len);
+               trans->result = __le16_to_cpu(evt->len);
+               byte_count += trans->result;
+               if (++evt == evt_end)
+                       evt = gsi_ring_virt(&evt_ring->ring, ring->base);
+               if (++trans == trans_end)
+                       trans = &trans_info->pool[0];
+       } while (evt != evt_last);
+
+       /* We record RX bytes when they are received */
+       channel->byte_count += byte_count;
+       channel->trans_count++;
+}
+
+static void
+gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id)
+{
+       struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+       u32 val;
+
+       /* We only need to write the lower 32 bits */
+       val = evt_ring->ring.wp_local;
+       iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
+}
+
+static u32 gsi_channel_max(struct gsi *gsi)
+{
+       u32 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
+
+       return u32_get_bits(val, NUM_CH_PER_EE_FMASK);
+}
+
+static u32 gsi_evt_ring_max(struct gsi *gsi)
+{
+       u32 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
+
+       return u32_get_bits(val, NUM_EV_PER_EE_FMASK);
+}
+
+/* Issue a GSI command by writing a value to a register, then wait
+ * for completion to be signaled.  Returns true if successful or
+ * false if a timeout occurred.
+ */
+static void
+gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
+{
+       unsigned long ret;
+
+       reinit_completion(completion);
+
+       iowrite32(val, gsi->virt + reg);
+       ret = wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ);
+       WARN(!ret, "%s timeout reg 0x%08x val 0x%08x\n", __func__, reg, val);
+}
+
+/* Issue an event ring command and wait for it to complete */
+static void evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
+                            enum gsi_evt_ch_cmd_opcode op)
+{
+       struct completion *completion = &gsi->evt_ring[evt_ring_id].completion;
+       u32 val = 0;
+
+       val |= u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
+       val |= u32_encode_bits(op, EV_OPCODE_FMASK);
+
+       gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion);
+}
+
+/* Issue a channel command and wait for it to complete */
+static void
+gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode op)
+{
+       u32 channel_id = gsi_channel_id(channel);
+       u32 val = 0;
+
+       val |= u32_encode_bits(channel_id, CH_CHID_FMASK);
+       val |= u32_encode_bits(op, CH_OPCODE_FMASK);
+
+       gsi_command(channel->gsi, GSI_CH_CMD_OFFSET, val, &channel->completion);
+}
+
+static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
+{
+       size_t size = roundup_pow_of_two(count * sizeof(struct gsi_tre));
+       dma_addr_t addr;
+
+       /* Hardware requires a power-of-2 ring size (and alignment) */
+       ring->virt = dma_alloc_coherent(gsi->dev, size, &addr, GFP_KERNEL);
+       if (!ring->virt)
+               return -ENOMEM;
+       ring->addr = addr;
+       ring->base = addr & GENMASK(31, 0);
+       ring->size = size;
+       ring->end = ring->base + size;
+       spin_lock_init(&ring->spinlock);
+
+       return 0;
+}
+
+static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
+{
+       dma_free_coherent(gsi->dev, ring->size, ring->virt, ring->addr);
+       memset(ring, 0, sizeof(*ring));
+}
+
+static void gsi_evt_ring_prime(struct gsi *gsi, u32 evt_ring_id)
+{
+       struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+       struct gsi_ring *ring = &evt_ring->ring;
+       unsigned long flags;
+
+       spin_lock_irqsave(&ring->spinlock, flags);
+
+       memset(ring->virt, 0, ring->size);
+       /* Point the write pointer at the last element */
+       ring->wp_local = ring_prev(ring, ring->base);
+       gsi_evt_ring_doorbell(gsi, evt_ring_id);
+
+       spin_unlock_irqrestore(&ring->spinlock, flags);
+}
+
+static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
+{
+       struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+       u32 val = 0;
+
+       BUILD_BUG_ON(sizeof(struct gsi_xfer_compl_evt) >
+                    field_max(EV_ELEMENT_SIZE_FMASK));
+
+       val |= u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK);
+       val |= EV_INTYPE_FMASK;
+       val |= u32_encode_bits(sizeof(struct gsi_xfer_compl_evt),
+                              EV_ELEMENT_SIZE_FMASK);
+       iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
+
+       val = u32_encode_bits(evt_ring->ring.size, EV_R_LENGTH_FMASK);
+       iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
+
+       /* The context 2 and 3 registers store the low-order and
+        * high-order 32 bits of the address of the event ring,
+        * respectively.
+        */
+       val = evt_ring->ring.base;
+       iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
+
+       val = evt_ring->ring.addr >> 32;
+       iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
+
+       /* Enable interrupt moderation by setting the moderation delay */
+       val = u32_encode_bits(IPA_GSI_EVT_RING_INT_MODT, MODT_FMASK);
+       val |= u32_encode_bits(1, MODC_FMASK);  /* comes from channel */
+       iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
+
+       /* No MSI write data, and MSI address high and low address is 0 */
+       iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
+       iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
+       iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
+
+       /* We don't need to get event read pointer updates */
+       iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
+       iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
+}
+
+static void gsi_ring_init(struct gsi_ring *ring)
+{
+       ring->wp = ring->base;
+       ring->wp_local = ring->base;
+       ring->rp_local = ring->base;
+}
+
+static void gsi_evt_ring_scratch_zero(struct gsi *gsi, u32 evt_ring_id)
+{
+       iowrite32(0, gsi->virt + GSI_EV_CH_E_SCRATCH_0_OFFSET(evt_ring_id));
+       iowrite32(0, gsi->virt + GSI_EV_CH_E_SCRATCH_1_OFFSET(evt_ring_id));
+}
+
+static int gsi_evt_ring_alloc_hw(struct gsi *gsi, u32 evt_ring_id)
+{
+       struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+       unsigned long flags;
+       u32 val;
+
+       evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
+
+       if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
+               dev_err(gsi->dev, "evt_ring_id %u allocation bad state %u\n",
+                       evt_ring_id, evt_ring->state);
+               return -EIO;
+       }
+
+       gsi_evt_ring_program(gsi, evt_ring_id);
+       gsi_ring_init(&evt_ring->ring);
+       gsi_evt_ring_prime(gsi, evt_ring_id);
+
+       spin_lock_irqsave(&gsi->spinlock, flags);
+
+       /* Enable the event interrupt (clear it first in case pending) */
+       val = BIT(evt_ring_id);
+       iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
+       gsi_irq_enable_event(gsi, evt_ring_id);
+
+       spin_unlock_irqrestore(&gsi->spinlock, flags);
+
+       return 0;
+}
+
+static void gsi_evt_ring_free_hw(struct gsi *gsi, u32 evt_ring_id)
+{
+       struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+       unsigned long flags;
+
+       spin_lock_irqsave(&gsi->spinlock, flags);
+
+       /* Disable the event interrupt */
+       gsi_irq_disable_event(gsi, evt_ring_id);
+
+       spin_unlock_irqrestore(&gsi->spinlock, flags);
+
+       evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
+
+       gsi_evt_ring_program(gsi, evt_ring_id);
+       gsi_ring_init(&evt_ring->ring);
+       gsi_evt_ring_scratch_zero(gsi, evt_ring_id);
+       gsi_evt_ring_prime(gsi, evt_ring_id);
+
+       evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
+}
+
+static int gsi_evt_ring_id_alloc(struct gsi *gsi)
+{
+       u32 evt_ring_id;
+
+       if (gsi->event_bitmap == ~0U)
+               return -ENOSPC;
+
+       evt_ring_id = ffz(gsi->event_bitmap);
+       gsi->event_bitmap |= BIT(evt_ring_id);
+
+       return (int)evt_ring_id;
+}
+
+static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
+{
+       gsi->event_bitmap &= ~BIT(evt_ring_id);
+}
+
+void gsi_channel_doorbell(struct gsi_channel *channel)
+{
+       u32 channel_id = gsi_channel_id(channel);
+       struct gsi *gsi = channel->gsi;
+       u32 val;
+
+       channel->tre_ring.wp = channel->tre_ring.wp_local;
+
+       /* We only need to write the lower 32 bits */
+       val = channel->tre_ring.wp_local;
+       iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
+}
+
+static void __gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id)
+{
+       struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+       u32 offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
+       struct gsi_channel *channel = evt_ring->channel;
+       struct gsi_ring *tre_ring = &channel->tre_ring;
+       struct gsi_ring *ring = &evt_ring->ring;
+       u32 rp = ioread32(gsi->virt + offset);
+       struct gsi_xfer_compl_evt *evt;
+       struct gsi_trans *trans;
+       u32 tre_offset;
+       u32 tre_index;
+       u32 rp_last;
+
+       /* If we have nothing new to process we're done */
+       if (ring->rp_local == rp)
+               return;
+
+       /* Extract information from the newly-completed events.  For TX
+        * channels, report the number of transferred bytes they represent.
+        * For RX channels, update each transaction with the number of bytes
+        * actually received.
+        */
+       if (channel->toward_ipa)
+               __gsi_evt_tx_update(evt_ring, rp);
+       else
+               __gsi_evt_rx_update(evt_ring, rp);
+
+       /* Get the TRE pointer from the latest completion event, and get
+        * the transaction associated with that.  Move all new transactions
+        * up to and including that one to the completed list.
+        */
+       rp_last = ring_prev(ring, rp);
+       evt = gsi_ring_virt(ring, rp_last);
+       tre_offset = le64_to_cpu(evt->xfer_ptr) & GENMASK(31, 0);
+       tre_index = ring_index(tre_ring, tre_offset);
+       trans = gsi_channel_trans_mapped(channel, tre_index);
+       gsi_trans_move_complete(trans);
+
+       /* We need nothing more from these TREs, so consume them */
+       tre_ring->rp_local = tre_offset;
+       gsi_ring_rp_local_add(tre_ring, 1);
+
+       /* Record that we're caught up on these events, and give the
+        * completed ones back to the hardware for reuse.
+        */
+       ring->rp_local = rp;
+       ring->wp_local = rp_last;
+       gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id);
+}
+
+/* Consult hardware, move any newly completed transactions to completed list */
+static void gsi_channel_update(struct gsi_channel *channel)
+{
+       struct gsi_evt_ring *evt_ring;
+       unsigned long flags;
+
+       evt_ring = &channel->gsi->evt_ring[channel->evt_ring_id];
+
+       spin_lock_irqsave(&evt_ring->ring.spinlock, flags);
+
+       __gsi_evt_ring_update(channel->gsi, channel->evt_ring_id);
+
+       spin_unlock_irqrestore(&evt_ring->ring.spinlock, flags);
+}
+
+/**
+ * gsi_channel_poll_one() - Return a single completed transaction on a channel
+ * @channel:   Channel to be polled
+ *
+ * @Return:     Transaction pointer, or null if none are available
+ *
+ * This function returns the first entry on a channel's completed
+ * transaction list.  If that list is empty, the hardware is consulted
+ * to determine whether any new transactions have completed.  If so,
+ * they're moved to the completed list and the new first entry is
+ * returned.  If there are no more completed transactions, a null
+ * pointer is returned.
+ */
+static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
+{
+       struct gsi_trans *trans;
+
+       /* Get the first transaction from the completed list */
+       trans = gsi_channel_trans_complete(channel);
+       if (!trans) {
+               /* List is empty; see if there's more to do */
+               gsi_channel_update(channel);
+               trans = gsi_channel_trans_complete(channel);
+       }
+
+       if (trans)
+               gsi_trans_move_polled(trans);
+
+       return trans;
+}
+
+/**
+ * gsi_channel_poll() - NAPI poll function for a channel
+ * @napi:      NAPI structure for the channel
+ * @budget:    Budget supplied by NAPI core
+
+ * @channel_id:        Channel to be reset
+ *
+ * @Return:     Number of items polled (<= budget)
+ *
+ * Single transactions completed by hardware are polled until either
+ * the budget is exhausted, or there are no more.  Each transaction
+ * polled is passed to gsi_trans_complete(), to perform remaining
+ * completion processing and retire/free the transaction.
+ */
+static int gsi_channel_poll(struct napi_struct *napi, int budget)
+{
+       struct gsi_channel *channel;
+       int count = 0;
+
+       channel = container_of(napi, struct gsi_channel, napi);
+       while (count < budget) {
+               struct gsi_trans *trans;
+
+               trans = gsi_channel_poll_one(channel);
+               if (!trans)
+                       break;
+               gsi_trans_complete(trans);
+       }
+
+       if (count < budget) {
+               napi_complete(&channel->napi);
+               (void)gsi_channel_intr(channel, true);
+       }
+
+       return count;
+}
+
+/* The event bitmap represents which event ids are available for
+ * allocation.  Set bits are not available, clear bits can be used.
+ * This function initializes the map so all events supported by the
+ * hardware are available, then precludes any reserved events from
+ * being allocated.
+ */
+static u32 gsi_event_bitmap_init(u32 evt_ring_max)
+{
+       u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
+
+       return event_bitmap | GENMASK(GSI_MHI_ER_END, GSI_MHI_ER_START);
+}
+
+/* Setup function for event rings */
+static int gsi_evt_ring_setup(struct gsi *gsi)
+{
+       u32 evt_ring_max;
+       u32 evt_ring_id;
+
+       evt_ring_max = gsi_evt_ring_max(gsi);
+       dev_dbg(gsi->dev, "evt_ring_max %u\n", evt_ring_max);
+       if (evt_ring_max != GSI_EVT_RING_MAX)
+               return -EIO;
+
+       for (evt_ring_id = 0; evt_ring_id < GSI_EVT_RING_MAX; evt_ring_id++) {
+               struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
+
+               evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
+               if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED)
+                       return -EIO;
+       }
+
+       /* Enable all event interrupts */
+       gsi_irq_enable_all(gsi);
+
+       return 0;
+}
+
+/* Inverse of gsi_evt_ring_setup() */
+static void gsi_evt_ring_teardown(struct gsi *gsi)
+{
+       gsi_irq_disable_all(gsi);
+}
+
+static void gsi_channel_scratch_write(struct gsi_channel *channel)
+{
+       u32 channel_id = gsi_channel_id(channel);
+       struct gsi_gpi_channel_scratch *gpi;
+       union gsi_channel_scratch scr = { };
+       struct gsi *gsi = channel->gsi;
+       u32 val;
+
+       /* See comments above definition of gsi_gpi_channel_scratch */
+       gpi = &scr.gpi;
+       gpi->max_outstanding_tre = channel->data->tlv_count *
+                                       sizeof(struct gsi_tre);
+       gpi->outstanding_threshold = 2 * sizeof(struct gsi_tre);
+
+       val = scr.data.word1;
+       iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
+
+       val = scr.data.word2;
+       iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
+
+       val = scr.data.word3;
+       iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
+
+       /* We must preserve the upper 16 bits of the last scratch
+        * register.  The next sequence assumes those bits remain
+        * unchanged between the read and the write.
+        */
+       val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
+       val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
+       iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
+}
+
+static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
+{
+       u32 channel_id = gsi_channel_id(channel);
+       struct gsi *gsi = channel->gsi;
+       u32 wrr_weight = 0;
+       u32 val = 0;
+
+       BUILD_BUG_ON(sizeof(struct gsi_tre) > field_max(ELEMENT_SIZE_FMASK));
+
+       val |= u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK);
+       if (channel->toward_ipa)
+               val |= CHTYPE_DIR_FMASK;
+       val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
+       val |= u32_encode_bits(sizeof(struct gsi_tre), ELEMENT_SIZE_FMASK);
+       iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
+
+       val = u32_encode_bits(channel->tre_ring.size, R_LENGTH_FMASK);
+       iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
+
+       /* The context 2 and 3 registers store the low-order and
+        * high-order 32 bits of the address of the channel ring,
+        * respectively.
+        */
+       val = channel->tre_ring.addr & GENMASK(31, 0);
+       iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
+
+       val = channel->tre_ring.addr >> 32;
+       iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
+
+       if (channel->data->wrr_priority)
+               wrr_weight = field_max(WRR_WEIGHT_FMASK);
+       val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
+
+       /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
+       if (doorbell)
+               val |= USE_DB_ENG_FMASK;
+       iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
+}
+
+static void
+__gsi_channel_config(struct gsi_channel *channel, bool doorbell_enable)
+{
+       gsi_channel_program(channel, doorbell_enable);
+       gsi_ring_init(&channel->tre_ring);
+       gsi_channel_scratch_write(channel);
+}
+
+void gsi_channel_config(struct gsi *gsi, u32 channel_id, bool doorbell_enable)
+{
+       struct gsi_channel *channel = &gsi->channel[channel_id];
+
+       mutex_lock(&gsi->mutex);
+
+       __gsi_channel_config(channel, doorbell_enable);
+
+       mutex_unlock(&gsi->mutex);
+}
+
+/* Setup function for a single channel */
+static int gsi_channel_setup_one(struct gsi_channel *channel)
+{
+       struct gsi *gsi = channel->gsi;
+       int ret;
+
+       if (!gsi)
+               return 0;       /* Ignore uninitialized channels */
+
+       channel->state = gsi_channel_state(channel);
+       if (channel->state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
+               return -EIO;
+
+       mutex_lock(&gsi->mutex);
+
+       ret = gsi_evt_ring_alloc_hw(gsi, channel->evt_ring_id);
+       if (ret) {
+               mutex_unlock(&gsi->mutex);
+
+               return ret;
+       }
+
+       gsi_channel_command(channel, GSI_CH_ALLOCATE);
+       ret = channel->state == GSI_CHANNEL_STATE_ALLOCATED ? 0 : -EIO;
+       if (ret) {
+               gsi_evt_ring_free_hw(gsi, channel->evt_ring_id);
+               mutex_unlock(&gsi->mutex);
+
+               return ret;
+       }
+
+       __gsi_channel_config(channel, true);
+
+       mutex_unlock(&gsi->mutex);
+
+       gsi->channel_stats.allocate++;
+
+       if (channel->toward_ipa)
+               netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
+                                 gsi_channel_poll, NAPI_POLL_WEIGHT);
+       else
+               netif_napi_add(&gsi->dummy_dev, &channel->napi,
+                              gsi_channel_poll, NAPI_POLL_WEIGHT);
+
+       return 0;
+}
+
+/* Inverse of gsi_channel_setup_one() */
+static void gsi_channel_teardown_one(struct gsi_channel *channel)
+{
+       struct gsi *gsi = channel->gsi;
+
+       if (!gsi)
+               return;
+
+       netif_napi_del(&channel->napi);
+
+       mutex_lock(&gsi->mutex);
+
+       gsi_channel_command(channel, GSI_CH_DE_ALLOC);
+
+       gsi->channel_stats.free++;
+
+       gsi_evt_ring_free_hw(gsi, channel->evt_ring_id);
+
+       mutex_unlock(&gsi->mutex);
+
+       gsi_channel_trans_exit(channel);
+}
+
+/* Setup function for channels */
+static int gsi_channel_setup(struct gsi *gsi)
+{
+       u32 channel_max;
+       u32 channel_id;
+       int ret;
+
+       channel_max = gsi_channel_max(gsi);
+       dev_dbg(gsi->dev, "channel_max %u\n", channel_max);
+       if (channel_max != GSI_CHANNEL_MAX)
+               return -EIO;
+
+       ret = gsi_evt_ring_setup(gsi);
+       if (ret)
+               return ret;
+
+       for (channel_id = 0; channel_id < GSI_CHANNEL_MAX; channel_id++) {
+               ret = gsi_channel_setup_one(&gsi->channel[channel_id]);
+               if (ret)
+                       goto err_unwind;
+       }
+
+       return 0;
+
+err_unwind:
+       while (channel_id--)
+               gsi_channel_teardown_one(&gsi->channel[channel_id]);
+       gsi_evt_ring_teardown(gsi);
+
+       return ret;
+}
+
+/* Inverse of gsi_channel_setup() */
+static void gsi_channel_teardown(struct gsi *gsi)
+{
+       u32 channel_id;
+
+       for (channel_id = 0; channel_id < GSI_CHANNEL_MAX; channel_id++) {
+               struct gsi_channel *channel = &gsi->channel[channel_id];
+
+               gsi_channel_teardown_one(channel);
+       }
+
+       gsi_evt_ring_teardown(gsi);
+}
+
+/* Setup function for GSI.  GSI firmware must be loaded and initialized */
+int gsi_setup(struct gsi *gsi)
+{
+       u32 val;
+
+       /* Here is where we first touch the GSI hardware */
+       val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
+       if (!(val & ENABLED_FMASK)) {
+               dev_err(gsi->dev, "GSI has not been enabled\n");
+               return -EIO;
+       }
+
+       /* Initialize the error log */
+       iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
+
+       /* Writing 1 indicates IRQ interrupts; 0 would be MSI */
+       iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
+
+       return gsi_channel_setup(gsi);
+}
+
+/* Inverse of gsi_setup() */
+void gsi_teardown(struct gsi *gsi)
+{
+       gsi_channel_teardown(gsi);
+}
+
+/* Initialize a channel's event ring */
+static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
+{
+       struct gsi *gsi = channel->gsi;
+       struct gsi_evt_ring *evt_ring;
+       int ret;
+
+       ret = gsi_evt_ring_id_alloc(gsi);
+       if (ret < 0)
+               return ret;
+       channel->evt_ring_id = ret;
+
+       evt_ring = &gsi->evt_ring[channel->evt_ring_id];
+       evt_ring->channel = channel;
+
+       ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->data->event_count);
+       if (ret)
+               goto err_free_evt_ring_id;
+
+       return 0;
+
+err_free_evt_ring_id:
+       gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
+
+       return ret;
+}
+
+/* Inverse of gsi_channel_evt_ring_init() */
+static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
+{
+       struct gsi *gsi = channel->gsi;
+       struct gsi_evt_ring *evt_ring;
+
+       evt_ring = &gsi->evt_ring[channel->evt_ring_id];
+       gsi_ring_free(gsi, &evt_ring->ring);
+
+       gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
+}
+
+/* Init function for event rings */
+static void gsi_evt_ring_init(struct gsi *gsi)
+{
+       u32 evt_ring_id;
+
+       BUILD_BUG_ON(GSI_EVT_RING_MAX >= BITS_PER_LONG);
+
+       gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_MAX);
+       gsi->event_enable_bitmap = 0;
+       for (evt_ring_id = 0; evt_ring_id < GSI_EVT_RING_MAX; evt_ring_id++)
+               init_completion(&gsi->evt_ring[evt_ring_id].completion);
+}
+
+/* Inverse of gsi_evt_ring_init() */
+static void gsi_evt_ring_exit(struct gsi *gsi)
+{
+       /* Nothing to do */
+}
+
+/* Init function for a single channel */
+static int
+gsi_channel_init_one(struct gsi *gsi, const struct gsi_ipa_endpoint_data *data)
+{
+       struct gsi_channel *channel;
+       int ret;
+
+       if (data->ee_id != GSI_EE_AP)
+               return 0;       /* Ignore non-AP channels */
+
+       if (data->channel_id >= GSI_CHANNEL_MAX)
+               return -EIO;
+       channel = &gsi->channel[data->channel_id];
+
+       channel->gsi = gsi;
+       channel->toward_ipa = data->toward_ipa;
+       channel->data = &data->channel;
+
+       init_completion(&channel->completion);
+
+       ret = gsi_channel_evt_ring_init(channel);
+       if (ret)
+               return ret;
+
+       ret = gsi_ring_alloc(gsi, &channel->tre_ring, channel->data->tre_count);
+       if (ret)
+               goto err_channel_evt_ring_exit;
+
+       ret = gsi_channel_trans_init(channel);
+       if (ret)
+               goto err_ring_free;
+
+       return 0;
+
+err_ring_free:
+       gsi_ring_free(gsi, &channel->tre_ring);
+err_channel_evt_ring_exit:
+       gsi_channel_evt_ring_exit(channel);
+
+       return ret;
+}
+
+/* Inverse of gsi_channel_init_one() */
+static void gsi_channel_exit_one(struct gsi_channel *channel)
+{
+       gsi_channel_trans_exit(channel);
+       gsi_ring_free(channel->gsi, &channel->tre_ring);
+       gsi_channel_evt_ring_exit(channel);
+}
+
+/* Init function for channels */
+static int gsi_channel_init(struct gsi *gsi, u32 data_count,
+                           const struct gsi_ipa_endpoint_data *data)
+{
+       int ret = 0;
+       u32 i;
+
+       gsi_evt_ring_init(gsi);
+       for (i = 0; i < data_count; i++) {
+               ret = gsi_channel_init_one(gsi, &data[i]);
+               if (ret)
+                       break;
+       }
+
+       return ret;
+}
+
+/* Inverse of gsi_channel_init() */
+static void gsi_channel_exit(struct gsi *gsi)
+{
+       u32 channel_id;
+
+       for (channel_id = 0; channel_id < GSI_CHANNEL_MAX; channel_id++)
+               gsi_channel_exit_one(&gsi->channel[channel_id]);
+       gsi_evt_ring_exit(gsi);
+}
+
+/* Init function for GSI.  GSI hardware does not need to be "ready" */
+int gsi_init(struct gsi *gsi, struct platform_device *pdev, u32 data_count,
+            const struct gsi_ipa_endpoint_data *data)
+{
+       struct resource *res;
+       resource_size_t size;
+       unsigned int irq;
+       int ret;
+
+       gsi->dev = &pdev->dev;
+       init_dummy_netdev(&gsi->dummy_dev);
+
+       /* Get GSI memory range and map it */
+       res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
+       if (!res)
+               return -ENXIO;
+
+       size = resource_size(res);
+       if (res->start > U32_MAX || size > U32_MAX - res->start)
+               return -EINVAL;
+
+       gsi->virt = ioremap_nocache(res->start, size);
+       if (!gsi->virt)
+               return -ENOMEM;
+
+       ret = platform_get_irq_byname(pdev, "gsi");
+       if (ret < 0)
+               goto err_unmap_virt;
+       irq = ret;
+
+       ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
+       if (ret)
+               goto err_unmap_virt;
+       gsi->irq = irq;
+
+       ret = enable_irq_wake(gsi->irq);
+       if (ret)
+               dev_err(gsi->dev, "error %d enabling gsi wake irq\n", ret);
+       gsi->irq_wake_enabled = ret ? 0 : 1;
+
+       spin_lock_init(&gsi->spinlock);
+       mutex_init(&gsi->mutex);
+
+       ret = gsi_channel_init(gsi, data_count, data);
+       if (ret)
+               goto err_mutex_destroy;
+
+       return 0;
+
+err_mutex_destroy:
+       mutex_destroy(&gsi->mutex);
+       if (gsi->irq_wake_enabled)
+               (void)disable_irq_wake(gsi->irq);
+       free_irq(gsi->irq, gsi);
+err_unmap_virt:
+       iounmap(gsi->virt);
+
+       return ret;
+}
+
+/* Inverse of gsi_init() */
+void gsi_exit(struct gsi *gsi)
+{
+       gsi_channel_exit(gsi);
+
+       mutex_destroy(&gsi->mutex);
+       if (gsi->irq_wake_enabled)
+               (void)disable_irq_wake(gsi->irq);
+       free_irq(gsi->irq, gsi);
+       iounmap(gsi->virt);
+}
+
+/* Returns the maximum number of pending transactions on a channel */
+u32 gsi_channel_trans_max(struct gsi *gsi, u32 channel_id)
+{
+       struct gsi_channel *channel = &gsi->channel[channel_id];
+
+       return channel->data->tre_count;
+}
+
+/* Returns the maximum number of TREs in a single transaction for a channel */
+u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
+{
+       struct gsi_channel *channel = &gsi->channel[channel_id];
+
+       return channel->data->tlv_count;
+}
+
+/* Wait for all transaction activity on a channel to complete */
+void gsi_channel_trans_quiesce(struct gsi *gsi, u32 channel_id)
+{
+       struct gsi_channel *channel = &gsi->channel[channel_id];
+       struct gsi_trans_info *trans_info;
+       struct gsi_trans *trans = NULL;
+       struct gsi_evt_ring *evt_ring;
+       struct list_head *list;
+       unsigned long flags;
+
+       trans_info = &channel->trans_info;
+       evt_ring = &channel->gsi->evt_ring[channel->evt_ring_id];
+
+       spin_lock_irqsave(&evt_ring->ring.spinlock, flags);
+
+       /* Find the last list to which a transaction was added */
+       if (!list_empty(&trans_info->alloc))
+               list = &trans_info->alloc;
+       else if (!list_empty(&trans_info->pending))
+               list = &trans_info->pending;
+       else if (!list_empty(&trans_info->complete))
+               list = &trans_info->complete;
+       else if (!list_empty(&trans_info->polled))
+               list = &trans_info->polled;
+       else
+               list = NULL;
+
+       if (list) {
+               struct gsi_trans *trans;
+
+               /* The last entry on this list is the last one allocated.
+                * Grab a reference so we can wait for it.
+                */
+               trans = list_last_entry(list, struct gsi_trans, links);
+               refcount_inc(&trans->refcount);
+       }
+
+       spin_lock_irqsave(&evt_ring->ring.spinlock, flags);
+
+       /* If there is one, wait for it to complete */
+       if (trans) {
+               wait_for_completion(&trans->completion);
+               gsi_trans_free(trans);
+       }
+}
+
+/* Make a channel operational */
+int gsi_channel_start(struct gsi *gsi, u32 channel_id)
+{
+       struct gsi_channel *channel = &gsi->channel[channel_id];
+
+       if (channel->state != GSI_CHANNEL_STATE_ALLOCATED &&
+           channel->state != GSI_CHANNEL_STATE_STOP_IN_PROC &&
+           channel->state != GSI_CHANNEL_STATE_STOPPED) {
+               dev_err(gsi->dev, "channel %u bad state %u\n", channel_id,
+                       (u32)channel->state);
+               return -ENOTSUPP;
+       }
+
+       napi_enable(&channel->napi);
+
+       mutex_lock(&gsi->mutex);
+
+       gsi_channel_command(channel, GSI_CH_START);
+
+       mutex_unlock(&gsi->mutex);
+
+       gsi->channel_stats.start++;
+
+       return 0;
+}
+
+/* Stop an operational channel */
+int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
+{
+       struct gsi_channel *channel = &gsi->channel[channel_id];
+       int ret;
+
+       if (channel->state == GSI_CHANNEL_STATE_STOPPED)
+               return 0;
+
+       if (channel->state != GSI_CHANNEL_STATE_STARTED &&
+           channel->state != GSI_CHANNEL_STATE_STOP_IN_PROC &&
+           channel->state != GSI_CHANNEL_STATE_ERROR) {
+               dev_err(gsi->dev, "channel %u bad state %u\n", channel_id,
+                       (u32)channel->state);
+               return -ENOTSUPP;
+       }
+
+       gsi_channel_trans_quiesce(gsi, channel_id);
+
+       mutex_lock(&gsi->mutex);
+
+       gsi_channel_command(channel, GSI_CH_STOP);
+
+       mutex_unlock(&gsi->mutex);
+
+       if (channel->state == GSI_CHANNEL_STATE_STOPPED)
+               ret = 0;
+       else if (channel->state == GSI_CHANNEL_STATE_STOP_IN_PROC)
+               ret = -EAGAIN;
+       else
+               ret = -EIO;
+
+       gsi->channel_stats.stop++;
+
+       if (!ret)
+               napi_disable(&channel->napi);
+
+       return ret;
+}
+
+/* Reset a GSI channel */
+int gsi_channel_reset(struct gsi *gsi, u32 channel_id)
+{
+       struct gsi_channel *channel = &gsi->channel[channel_id];
+
+       if (channel->state != GSI_CHANNEL_STATE_STOPPED) {
+               dev_err(gsi->dev, "channel %u bad state %u\n", channel_id,
+                       (u32)channel->state);
+               return -ENOTSUPP;
+       }
+
+       /* In case the reset follows stop, need to wait 1 msec */
+       usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
+
+       mutex_lock(&gsi->mutex);
+
+       gsi_channel_command(channel, GSI_CH_RESET);
+
+       /* workaround: reset RX channels again */
+       if (!channel->toward_ipa) {
+               usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
+               gsi_channel_command(channel, GSI_CH_RESET);
+       }
+
+       __gsi_channel_config(channel, true);
+
+       /* Cancel pending transactions before the channel is started again */
+       gsi_channel_trans_cancel_pending(channel);
+
+       mutex_unlock(&gsi->mutex);
+
+       gsi->channel_stats.reset++;
+
+       return 0;
+}
-- 
2.20.1

Reply via email to