This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308,
RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using
8-bit NAND interface on the ARM based RK3308 platform.

Support Rockchip SoCs and NFC versions:
- PX30 and RK3326(NFCv900).
        ECC: 16/40/60/70 bits/1KB.
        CLOCK: ahb and nfc.
- RK3308 and RV1108(NFCv800).
        ECC: 16 bits/1KB.
        CLOCK: ahb and nfc.
- RK3036 and RK3128(NFCv622).
        ECC: 16/24/40/60 bits/1KB.
        CLOCK: ahb and nfc.
- RK3066, RK3188 and RK2928(NFCv600).
        ECC: 16/24/40/60 bits/1KB.
        CLOCK: ahb.

Support feature:
- Read full page data by DMA.
- Support HW ECC(one step is 1KB).
- Support 2 - 32K page size.
- Support 4 CS(depend on Soc)

Limitations:
- Unsupport 512B ecc step.
- Raw page read and write without ecc redundancy code. So could not support
  raw data dump and restore.
- Untested on some SOCs.
- Unsupport subpage.
- Unsupport randomizer.
- The original bad block mask is not supported. It is recommended to use
  the BBT(bad block table).

Signed-off-by: Yifeng Zhao <yifeng.z...@rock-chips.com>
---

Changes in v6:
- The mtd->name set by NAND label property.
- Add some comments.
- Fix compile error.

Changes in v5:
- Add boot blocks support  with different ecc for bootrom.
- Rename rockchip-nand.c to rockchip-nand-controller.c.
- Unification of other variable names.
- Remove some compatible define.

Changes in v4:
- Define platform data structure for the register offsets.
- The compatible define with rkxx_nfc.
- Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS.
- Use exec_op instead of legacy hooks.

Changes in v3: None
Changes in v2:
- Fix compile error.
- Include header files sorted by file name.

 drivers/mtd/nand/raw/Kconfig                  |   21 +
 drivers/mtd/nand/raw/Makefile                 |    1 +
 .../mtd/nand/raw/rockchip-nand-controller.c   | 1393 +++++++++++++++++
 3 files changed, 1415 insertions(+)
 create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c

diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index a80a46bb5b8b..59e6e2a48ab9 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -433,6 +433,27 @@ config MTD_NAND_MESON
          Enables support for NAND controller on Amlogic's Meson SoCs.
          This controller is found on Meson SoCs.
 
+config MTD_NAND_ROCKCHIP
+       tristate "Rockchip NAND controller"
+       depends on ARCH_ROCKCHIP || COMPILE_TEST
+       depends on HAS_IOMEM
+       help
+         Enables support for NAND controller on Rockchip SoCs.
+         There are four different versions of NAND FLASH Controllers,
+         including:
+         - PX30 and RK3326(NFCv900).
+               ECC: 16/40/60/70 bits/1KB.
+               CLOCK: ahb and nfc.
+         - RK3308 and RV1108(NFCv800).
+               ECC: 16 bits/1KB.
+               CLOCK: ahb and nfc.
+         - RK3036 and RK3128(NFCv622).
+               ECC: 16/24/40/60 bits/1KB.
+               CLOCK: ahb and nfc.
+         - RK3066, RK3188 and RK2928(NFCv600).
+               ECC: 16/24/40/60 bits/1KB.
+               CLOCK: ahb.
+
 config MTD_NAND_GPIO
        tristate "GPIO assisted NAND controller"
        depends on GPIOLIB || COMPILE_TEST
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index 2d136b158fb7..a54aa85f49b1 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_TEGRA)          += tegra_nand.o
 obj-$(CONFIG_MTD_NAND_STM32_FMC2)      += stm32_fmc2_nand.o
 obj-$(CONFIG_MTD_NAND_MESON)           += meson_nand.o
 obj-$(CONFIG_MTD_NAND_CADENCE)         += cadence-nand-controller.o
+obj-$(CONFIG_MTD_NAND_ROCKCHIP)                += rockchip-nand-controller.o
 
 nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
 nand-objs += nand_onfi.o
diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c 
b/drivers/mtd/nand/raw/rockchip-nand-controller.c
new file mode 100644
index 000000000000..3d6cbca3565a
--- /dev/null
+++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c
@@ -0,0 +1,1393 @@
+// SPDX-License-Identifier: GPL-2.0 OR MIT
+/*
+ * Rockchip NAND Flash controller driver.
+ * Copyright (C) 2020 Rockchip Inc.
+ * Author: Yifeng Zhao <yifeng.z...@rock-chips.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/interrupt.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+
+/*
+ * NFC Page Data Layout:
+ *     1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
+ *     1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
+ *     ......
+ * NAND Page Data Layout:
+ *     1024 * n Data + m Bytes oob
+ * Original Bad Block Mask Location:
+ *     First byte of oob(spare).
+ * nand_chip->oob_poi data layout:
+ *     4Bytes sys data + .... + 4Bytes sys data + ecc data.
+ */
+
+/* NAND controller register definition */
+#define        NFC_READ                (0)
+#define        NFC_WRITE               (1)
+#define        NFC_FMCTL               (0x00)
+#define                FMCTL_CE_SEL_M          0xFF
+#define                FMCTL_CE_SEL(x)         (1 << (x))
+#define                FMCTL_WP                BIT(8)
+#define                FMCTL_RDY               BIT(9)
+#define        NFC_FMWAIT              (0x04)
+#define                FLCTL_RST               BIT(0)
+#define                FLCTL_WR                (1)     /* 0: read, 1: write */
+#define                FLCTL_XFER_ST           BIT(2)
+#define                FLCTL_XFER_EN           BIT(3)
+#define                FLCTL_ACORRECT          BIT(10) /* Auto correct error 
bits. */
+#define                FLCTL_XFER_READY        BIT(20)
+#define                FLCTL_XFER_SECTOR       (22)
+#define                FLCTL_TOG_FIX           BIT(29)
+#define                BCHCTL_BANK_M   (7 << 5)
+#define                BCHCTL_BANK     (5)
+#define                DMA_ST                  BIT(0)
+#define                DMA_WR                  (1)     /* 0: write, 1: read */
+#define                DMA_EN                  BIT(2)
+#define                DMA_AHB_SIZE            (3)     /* 0: 1, 1: 2, 2: 4 */
+#define                DMA_BURST_SIZE          (6)     /* 0: 1, 3: 4, 5: 8, 7: 
16 */
+#define                DMA_INC_NUM             (9)     /* 1 - 16 */
+#define                ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) \
+                       | (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
+#define                INT_DMA                 BIT(0)
+#define        NFC_BANK                (0x800)
+#define        NFC_BANK_STEP           (0x100)
+#define                BANK_DATA               (0x00)
+#define                BANK_ADDR               (0x04)
+#define                BANK_CMD                (0x08)
+#define        NFC_SRAM0               (0x1000)
+#define        NFC_SRAM1               (0x1400)
+#define        NFC_SRAM_SIZE           (0x400)
+#define        NFC_TIMEOUT             (500000)
+#define        NFC_MAX_OOB_PER_STEP    128
+#define        NFC_MIN_OOB_PER_STEP    64
+#define        MAX_DATA_SIZE           0xFFFC
+#define        MAX_ADDRESS_CYC         6
+#define        NFC_ECC_MAX_MODES       4
+#define        NFC_MAX_NSELS           (8) /* Some Socs only have 1 or 2 CSs. 
*/
+#define        NFC_SYS_DATA_SIZE       (4) /* 4 bytes sys data in oob pre 1024 
data.*/
+#define        RK_DEFAULT_CLOCK_RATE   (150 * 1000 * 1000) /* 150 Mhz */
+#define        ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | 
(rwcs))
+
+enum nfc_type {
+       NFC_V6,
+       NFC_V8,
+       NFC_V9,
+};
+
+/**
+ * struct rk_ecc_cnt_status: represent a ecc status data.
+ * @err_flag_bit: error flag bit index at register.
+ * @low: ecc count low bit index at register.
+ * @low_mask: mask bit.
+ * @low_bn: ecc count low bit number.
+ * @high: ecc count high bit index at register.
+ * @high_mask: mask bit
+ */
+struct ecc_cnt_status {
+       u8 err_flag_bit;
+       u8 low;
+       u8 low_mask;
+       u8 low_bn;
+       u8 high;
+       u8 high_mask;
+};
+
+/**
+ * @type: nfc version
+ * @ecc_strengths: ecc strengths
+ * @ecc_cfgs: ecc config values
+ * @flctl_off: FLCTL register offset
+ * @bchctl_off: BCHCTL register offset
+ * @dma_data_buf_off: DMA_DATA_BUF register offset
+ * @dma_oob_buf_off: DMA_OOB_BUF register offset
+ * @dma_cfg_off: DMA_CFG register offset
+ * @dma_st_off: DMA_ST register offset
+ * @bch_st_off: BCG_ST register offset
+ * @randmz_off: RANDMZ register offset
+ * @int_en_off: interrupt enable register offset
+ * @int_clr_off: interrupt clean register offset
+ * @int_st_off: interrupt status register offset
+ * @oob0_off: oob0 register offset
+ * @oob1_off: oob1 register offset
+ * @ecc0: represent ECC0 status data
+ * @ecc1: represent ECC1 status data
+ */
+struct nfc_cfg {
+       enum nfc_type type;
+       u8 ecc_strengths[NFC_ECC_MAX_MODES];
+       u32 ecc_cfgs[NFC_ECC_MAX_MODES];
+       u32 flctl_off;
+       u32 bchctl_off;
+       u32 dma_cfg_off;
+       u32 dma_data_buf_off;
+       u32 dma_oob_buf_off;
+       u32 dma_st_off;
+       u32 bch_st_off;
+       u32 randmz_off;
+       u32 int_en_off;
+       u32 int_clr_off;
+       u32 int_st_off;
+       u32 oob0_off;
+       u32 oob1_off;
+       struct ecc_cnt_status ecc0;
+       struct ecc_cnt_status ecc1;
+};
+
+struct rk_nfc_nand_chip {
+       struct list_head node;
+       struct nand_chip chip;
+
+       u32 spare_per_sector;
+       u32 oob_buf_per_sector;
+       u32 boot_blks;
+       u32 boot_ecc;
+
+       int nsels;
+       u8 sels[0];
+       /* Nothing after this field. */
+};
+
+struct rk_nfc_clk {
+       int nfc_rate;
+       struct clk *nfc_clk;
+       struct clk *ahb_clk;
+};
+
+struct rk_nfc {
+       struct nand_controller controller;
+       struct rk_nfc_clk clk;
+
+       struct device *dev;
+       const struct nfc_cfg *cfg;
+       void __iomem *regs;
+
+       int selected_bank;
+       int band_offset;
+
+       struct completion done;
+       struct list_head chips;
+
+       u8 *buffer;
+       u8 *page_buf;
+       u32 *oob_buf;
+
+       unsigned long assigned_cs;
+};
+
+static inline struct rk_nfc_nand_chip *to_rk_nand(struct nand_chip *chip)
+{
+       return container_of(chip, struct rk_nfc_nand_chip, chip);
+}
+
+static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
+{
+       return (u8 *)p + i * chip->ecc.size;
+}
+
+static inline u8 *oob_ptr(struct nand_chip *chip, int i)
+{
+       u8 *poi;
+
+       poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
+
+       return poi;
+}
+
+static inline int rk_data_len(struct nand_chip *chip)
+{
+       struct rk_nfc_nand_chip *rk_nand = to_rk_nand(chip);
+
+       return chip->ecc.size + rk_nand->spare_per_sector;
+}
+
+static inline u8 *rk_data_ptr(struct nand_chip *chip,  int i)
+{
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+       return nfc->buffer + i * rk_data_len(chip);
+}
+
+static inline u8 *rk_oob_ptr(struct nand_chip *chip, int i)
+{
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+       return nfc->buffer + i * rk_data_len(chip) + chip->ecc.size;
+}
+
+static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
+{
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       struct rk_nfc_nand_chip *rk_nand = to_rk_nand(chip);
+       u32 val;
+
+       if (cs < 0) {
+               nfc->selected_bank = -1;
+               /* Deselect the currently selected target. */
+               val = readl_relaxed(nfc->regs + NFC_FMCTL);
+               val &= ~FMCTL_CE_SEL_M;
+               writel(val, nfc->regs + NFC_FMCTL);
+               return;
+       }
+
+       nfc->selected_bank = rk_nand->sels[cs];
+       nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
+
+       val = readl_relaxed(nfc->regs + NFC_FMCTL);
+       val &= ~FMCTL_CE_SEL_M;
+       val |= FMCTL_CE_SEL(nfc->selected_bank);
+
+       writel(val, nfc->regs + NFC_FMCTL);
+}
+
+static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
+{
+       int rc;
+       u32 val;
+
+       rc = readl_poll_timeout_atomic(nfc->regs + NFC_FMCTL, val,
+                                      val & FMCTL_RDY, 10, NFC_TIMEOUT);
+
+       return rc;
+}
+
+static inline u8 rk_nfc_read_byte(struct nand_chip *chip)
+{
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+       return readb_relaxed(nfc->regs + nfc->band_offset + BANK_DATA);
+}
+
+static void rk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len)
+{
+       int i;
+
+       for (i = 0; i < len; i++)
+               buf[i] = rk_nfc_read_byte(chip);
+}
+
+static void rk_nfc_write_byte(struct nand_chip *chip, u8 byte)
+{
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+       writeb(byte, nfc->regs + nfc->band_offset + BANK_DATA);
+}
+
+static void rk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
+{
+       int i;
+
+       for (i = 0; i < len; i++)
+               rk_nfc_write_byte(chip, buf[i]);
+}
+
+static int rk_nfc_cmd(struct nand_chip *chip,
+                     const struct nand_subop *subop)
+{
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       unsigned int i, j, remaining, start;
+       int reg_offset = nfc->band_offset;
+       void __iomem *data_reg;
+       u8 *inbuf = NULL;
+       const u8 *outbuf;
+       u32 cnt = 0;
+       int ret = 0;
+
+
+       for (i = 0; i < subop->ninstrs; i++) {
+               const struct nand_op_instr *instr = &subop->instrs[i];
+
+               switch (instr->type) {
+               case NAND_OP_CMD_INSTR:
+                       writeb(instr->ctx.cmd.opcode,
+                              nfc->regs + reg_offset + BANK_CMD);
+                       break;
+
+               case NAND_OP_ADDR_INSTR:
+                       remaining = nand_subop_get_num_addr_cyc(subop, i);
+                       start = nand_subop_get_addr_start_off(subop, i);
+
+                       for (j = 0; j < 8 && j + start < remaining; j++)
+                               writeb(instr->ctx.addr.addrs[j + start],
+                                      nfc->regs + reg_offset + BANK_ADDR);
+                       break;
+
+               case NAND_OP_DATA_IN_INSTR:
+               case NAND_OP_DATA_OUT_INSTR:
+                       start = nand_subop_get_data_start_off(subop, i);
+                       cnt = nand_subop_get_data_len(subop, i);
+                       data_reg = nfc->regs + nfc->band_offset + BANK_DATA;
+
+                       if (instr->type == NAND_OP_DATA_OUT_INSTR) {
+                               outbuf = instr->ctx.data.buf.out + start;
+                               for (j = 0; j < cnt; j++)
+                                       writeb(outbuf[j], data_reg);
+                       } else {
+                               inbuf = instr->ctx.data.buf.in + start;
+                               for (j = 0; j < cnt; j++)
+                                       inbuf[j] = readb_relaxed(data_reg);
+                       }
+                       break;
+
+               case NAND_OP_WAITRDY_INSTR:
+                       if (rk_nfc_wait_ioready(nfc) < 0) {
+                               ret = -ETIMEDOUT;
+                               dev_err(nfc->dev, "IO not ready\n");
+                       }
+                       break;
+               }
+       }
+
+       return ret;
+}
+
+static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
+       NAND_OP_PARSER_PATTERN(
+               rk_nfc_cmd,
+               NAND_OP_PARSER_PAT_CMD_ELEM(true),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
+               NAND_OP_PARSER_PAT_CMD_ELEM(true),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+               NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
+       NAND_OP_PARSER_PATTERN(
+               rk_nfc_cmd,
+               NAND_OP_PARSER_PAT_CMD_ELEM(true),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
+               NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
+               NAND_OP_PARSER_PAT_CMD_ELEM(true),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+);
+
+static int rk_nfc_exec_op(struct nand_chip *chip,
+                         const struct nand_operation *op,
+                         bool check_only)
+{
+       rk_nfc_select_chip(chip, op->cs);
+       return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
+                                     check_only);
+}
+
+static int rk_nfc_setup_data_interface(struct nand_chip *chip, int csline,
+                                      const struct nand_data_interface *conf)
+{
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       const struct nand_sdr_timings *timings;
+       u32 rate, tc2rw, trwpw, trw2c;
+       u32 temp;
+
+       if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+               return 0;
+
+       /* Not onfi nand flash. */
+       if (!chip->parameters.onfi)
+               return 0;
+
+       timings = nand_get_sdr_timings(conf);
+       if (IS_ERR(timings))
+               return -ENOTSUPP;
+
+       if (IS_ERR(nfc->clk.nfc_clk))
+               rate = clk_get_rate(nfc->clk.ahb_clk);
+       else
+               rate = clk_get_rate(nfc->clk.nfc_clk);
+
+       /* Turn clock rate into KHz. */
+       rate /= 1000;
+
+       tc2rw = 1;
+       trw2c = 1;
+
+       trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
+       trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
+
+       temp = timings->tREA_max / 1000;
+       temp = DIV_ROUND_UP(temp * rate, 1000000);
+
+       if (trwpw < temp)
+               trwpw = temp;
+
+       /*
+        * ACCON: access timing control register
+        * -------------------------------------
+        * 31:18: reserved
+        * 17:12: csrw, clock cycles from the falling edge of CSn to the
+                falling edge of RDn or WRn
+        * 11:11: reserved
+        * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
+        * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
+                rising edge of CSn
+        */
+       temp = ACCTIMING(tc2rw, trwpw, trw2c);
+       writel(temp, nfc->regs + NFC_FMWAIT);
+
+       return 0;
+}
+
+static int rk_nfc_hw_ecc_setup(struct nand_chip *chip,
+                              struct nand_ecc_ctrl *ecc,
+                              uint32_t strength)
+{
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       u32 reg, i;
+
+       for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
+               if (ecc->strength == nfc->cfg->ecc_strengths[i]) {
+                       reg = nfc->cfg->ecc_cfgs[i];
+                       break;
+               }
+       }
+
+       if (i >= NFC_ECC_MAX_MODES)
+               return -EINVAL;
+
+       writel(reg, nfc->regs + nfc->cfg->bchctl_off);
+
+       return 0;
+}
+
+static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
+                             dma_addr_t dma_data, dma_addr_t dma_oob)
+{
+       u32 dma_reg, fl_reg, bch_reg;
+
+       dma_reg = DMA_ST | ((!rw) << DMA_WR)  | DMA_EN | (2 << DMA_AHB_SIZE) |
+             (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
+
+       fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
+                (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
+
+       if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
+               bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
+               bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
+                         (nfc->selected_bank << BCHCTL_BANK);
+               writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
+       }
+
+       writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
+       writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
+       writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
+       writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
+       fl_reg |= FLCTL_XFER_ST;
+       writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
+}
+
+static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
+{
+       void __iomem *ptr;
+       int ret = 0;
+       u32 reg;
+
+       ptr = nfc->regs + nfc->cfg->flctl_off;
+
+       ret = readl_poll_timeout_atomic(ptr, reg,
+                                       reg & FLCTL_XFER_READY,
+                                       10, NFC_TIMEOUT);
+
+       return ret;
+}
+
+static int rk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+                            const u8 *buf, int page, int raw)
+{
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       struct rk_nfc_nand_chip *rk_nand = to_rk_nand(chip);
+       struct nand_ecc_ctrl *ecc = &chip->ecc;
+       int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
+                       NFC_MIN_OOB_PER_STEP;
+       int pages_per_blk = mtd->erasesize / mtd->writesize;
+       int ret = 0, i, boot_rom_mode = 0;
+       dma_addr_t dma_data, dma_oob;
+       u32 reg;
+       u8 *oob;
+
+       nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+       if (!raw) {
+               memcpy(nfc->page_buf, buf, mtd->writesize);
+               memset(nfc->oob_buf, 0xff, oob_step * ecc->steps);
+
+               /*
+                * The first 8(some devices are 4 or 16) blocks in use by
+                * the boot ROM and the first 32 bits of oob need to link
+                * to the next page address in the same block.
+                * Config the ECC algorithm supported by the boot ROM.
+                */
+               if (page < pages_per_blk * rk_nand->boot_blks &&
+                   chip->options & NAND_IS_BOOT_MEDIUM) {
+                       boot_rom_mode = 1;
+                       if (rk_nand->boot_ecc != ecc->strength)
+                               rk_nfc_hw_ecc_setup(chip, ecc,
+                                                   rk_nand->boot_ecc);
+               }
+
+               /*
+                * Swap the first oob with the seventh oob and bad block
+                * mask is saved at the seventh oob.
+                */
+               swap(chip->oob_poi[0], chip->oob_poi[7]);
+
+               for (i = 0; i < ecc->steps; i++) {
+                       oob = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
+                       reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
+                             oob[3] << 24;
+                       if (!i && boot_rom_mode)
+                               reg = (page & (pages_per_blk - 1)) * 4;
+
+                       if (nfc->cfg->type == NFC_V6 ||
+                           nfc->cfg->type == NFC_V8)
+                               nfc->oob_buf[i * oob_step / 4] = reg;
+                       else
+                               nfc->oob_buf[i] = reg;
+               }
+
+               dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
+                                         mtd->writesize, DMA_TO_DEVICE);
+               dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
+                                        ecc->steps * oob_step,
+                                        DMA_TO_DEVICE);
+
+               reinit_completion(&nfc->done);
+               writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
+
+               rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
+                                 dma_oob);
+               ret = wait_for_completion_timeout(&nfc->done,
+                                                 msecs_to_jiffies(100));
+               if (!ret)
+                       dev_warn(nfc->dev, "write: wait dma done timeout.\n");
+               /*
+                * Whether the DMA transfer is completed or not. The driver
+                * needs to check the NFC`s status register to see if the data
+                * transfer was completed.
+                */
+               ret = rk_nfc_wait_for_xfer_done(nfc);
+
+               dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
+                                DMA_TO_DEVICE);
+               dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
+                                DMA_TO_DEVICE);
+
+               if (boot_rom_mode && rk_nand->boot_ecc != ecc->strength)
+                       rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
+
+               if (ret) {
+                       ret = -EIO;
+                       dev_err(nfc->dev,
+                                "write: wait transfer done timeout.\n");
+               }
+       } else {
+               rk_nfc_write_buf(chip, buf, mtd->writesize + + mtd->oobsize);
+       }
+
+       if (ret)
+               return ret;
+
+       ret = nand_prog_page_end_op(chip);
+
+       /* Deselect the currently selected target. */
+       rk_nfc_select_chip(chip, -1);
+
+       return ret;
+}
+
+static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
+                                int oob_on, int page)
+{
+       struct mtd_info *mtd = nand_to_mtd(chip);
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       u32 i;
+
+       memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
+       swap(chip->oob_poi[0], chip->oob_poi[7]);
+       for (i = 0; i < chip->ecc.steps; i++) {
+               if (buf)
+                       memcpy(rk_data_ptr(chip, i), data_ptr(chip, buf, i),
+                              chip->ecc.size);
+
+               memcpy(rk_oob_ptr(chip, i), oob_ptr(chip, i),
+                      NFC_SYS_DATA_SIZE);
+       }
+
+       return rk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
+}
+
+static int rk_nfc_write_oob_std(struct nand_chip *chip, int page)
+{
+       return rk_nfc_write_page_raw(chip, NULL, 1, page);
+}
+
+static int rk_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+                           u32 data_offs, u32 readlen,
+                           u8 *buf, int page, int raw)
+{
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       struct rk_nfc_nand_chip *rk_nand = to_rk_nand(chip);
+       struct nand_ecc_ctrl *ecc = &chip->ecc;
+       int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
+                       NFC_MIN_OOB_PER_STEP;
+       int pages_per_blk = mtd->erasesize / mtd->writesize;
+       dma_addr_t dma_data, dma_oob;
+       int ret = 0, i, boot_rom_mode = 0;
+       int bitflips = 0, bch_st;
+       u8 *oob;
+       u32 tmp;
+
+       nand_read_page_op(chip, page, 0, NULL, 0);
+       if (!raw) {
+               dma_data = dma_map_single(nfc->dev, nfc->page_buf,
+                                         mtd->writesize,
+                                         DMA_FROM_DEVICE);
+               dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
+                                        ecc->steps * oob_step,
+                                        DMA_FROM_DEVICE);
+
+               /*
+                * The first 8(some devices are 4 or 16) blocks in use by
+                * the bootrom.
+                * Config the ECC algorithm supported by the boot ROM.
+                */
+               if (page < pages_per_blk * rk_nand->boot_blks &&
+                   chip->options & NAND_IS_BOOT_MEDIUM) {
+                       boot_rom_mode = 1;
+                       if (rk_nand->boot_ecc != ecc->strength)
+                               rk_nfc_hw_ecc_setup(chip, ecc,
+                                                   rk_nand->boot_ecc);
+               }
+
+               reinit_completion(&nfc->done);
+               writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
+               rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
+                                 dma_oob);
+               ret = wait_for_completion_timeout(&nfc->done,
+                                                 msecs_to_jiffies(100));
+               if (!ret)
+                       dev_warn(nfc->dev, "read: wait dma done timeout.\n");
+               /*
+                * Whether the DMA transfer is completed or not. The driver
+                * needs to check the NFC`s status register to see if the data
+                * transfer was completed.
+                */
+               ret = rk_nfc_wait_for_xfer_done(nfc);
+               dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
+                                DMA_FROM_DEVICE);
+               dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
+                                DMA_FROM_DEVICE);
+
+               if (ret) {
+                       bitflips = -EIO;
+                       dev_err(nfc->dev,
+                                "read: wait transfer done timeout.\n");
+                       goto out;
+               }
+
+               for (i = 0; i < ecc->steps; i++) {
+                       oob = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
+                       if (nfc->cfg->type == NFC_V6 ||
+                           nfc->cfg->type == NFC_V8)
+                               tmp = nfc->oob_buf[i * oob_step / 4];
+                       else
+                               tmp = nfc->oob_buf[i];
+                       *oob++ = (u8)tmp;
+                       *oob++ = (u8)(tmp >> 8);
+                       *oob++ = (u8)(tmp >> 16);
+                       *oob++ = (u8)(tmp >> 24);
+               }
+
+               /*
+                * Swap the first oob with the seventh oob and bad block
+                * mask is saved at the seventh oob.
+                */
+               swap(chip->oob_poi[0], chip->oob_poi[7]);
+
+               for (i = 0; i < ecc->steps / 2; i++) {
+                       bch_st = readl_relaxed(nfc->regs +
+                                              nfc->cfg->bch_st_off + i * 4);
+                       if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
+                           bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
+                               mtd->ecc_stats.failed++;
+                               bitflips = -1;
+                       } else {
+                               ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
+                               mtd->ecc_stats.corrected += ret;
+                               bitflips = max_t(u32, bitflips, ret);
+
+                               ret = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
+                               mtd->ecc_stats.corrected += ret;
+                               bitflips = max_t(u32, bitflips, ret);
+                       }
+               }
+out:
+               memcpy(buf, nfc->page_buf, mtd->writesize);
+
+               if (boot_rom_mode && rk_nand->boot_ecc != ecc->strength)
+                       rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
+
+               if (bitflips < 0)
+                       dev_err(nfc->dev, "read page: %x ecc error!\n", page);
+       } else {
+               rk_nfc_read_buf(chip, buf, mtd->writesize + mtd->oobsize);
+       }
+       /* Deselect the currently selected target. */
+       rk_nfc_select_chip(chip, -1);
+
+       return bitflips;
+}
+
+static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
+                                  int oob_on, int page)
+{
+       return rk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0);
+}
+
+static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on,
+                                 int pg)
+{
+       struct mtd_info *mtd = nand_to_mtd(chip);
+
+       return rk_nfc_read_page(mtd, chip, 0, mtd->writesize, p, pg, 0);
+}
+
+static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
+                               int page)
+{
+       struct mtd_info *mtd = nand_to_mtd(chip);
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       int i, ret;
+
+       ret = rk_nfc_read_page(mtd, chip, 0, mtd->writesize, nfc->buffer,
+                              page, 1);
+       if (ret < 0)
+               return ret;
+
+       for (i = 0; i < chip->ecc.steps; i++) {
+               memcpy(oob_ptr(chip, i), rk_oob_ptr(chip, i),
+                      NFC_SYS_DATA_SIZE);
+
+               if (buf)
+                       memcpy(data_ptr(chip, buf, i), rk_data_ptr(chip, i),
+                              chip->ecc.size);
+       }
+       swap(chip->oob_poi[0], chip->oob_poi[7]);
+
+       return ret;
+}
+
+static int rk_nfc_read_oob_std(struct nand_chip *chip, int page)
+{
+       return rk_nfc_read_page_raw(chip, NULL, 1, page);
+}
+
+static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
+{
+       /* Disable flash wp. */
+       writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
+       /* Config default timing 40ns at 150 Mhz nfc clock. */
+       writel(0x1081, nfc->regs + NFC_FMWAIT);
+       /* Disable randomizer and DMA. */
+       writel(0, nfc->regs + nfc->cfg->randmz_off);
+       writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
+       writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
+}
+
+static irqreturn_t rk_nfc_irq(int irq, void *id)
+{
+       struct rk_nfc *nfc = id;
+       u32 sta, ien;
+
+       sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
+       ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
+
+       if (!(sta & ien))
+               return IRQ_NONE;
+
+       writel(sta, nfc->regs + nfc->cfg->int_clr_off);
+       writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
+
+       complete(&nfc->done);
+
+       return IRQ_HANDLED;
+}
+
+static int rk_nfc_enable_clk(struct device *dev, struct rk_nfc_clk *clk)
+{
+       int ret;
+
+       if (!IS_ERR(clk->nfc_clk)) {
+               ret = clk_prepare_enable(clk->nfc_clk);
+               if (ret) {
+                       dev_err(dev, "failed to enable nfc clk\n");
+                       return ret;
+               }
+       }
+
+       ret = clk_prepare_enable(clk->ahb_clk);
+       if (ret) {
+               dev_err(dev, "failed to enable ahb clk\n");
+               if (!IS_ERR(clk->nfc_clk))
+                       clk_disable_unprepare(clk->nfc_clk);
+               return ret;
+       }
+
+       return 0;
+}
+
+static void rk_nfc_disable_clk(struct rk_nfc_clk *clk)
+{
+       if (!IS_ERR(clk->nfc_clk))
+               clk_disable_unprepare(clk->nfc_clk);
+       clk_disable_unprepare(clk->ahb_clk);
+}
+
+static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
+                                struct mtd_oob_region *oob_region)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+
+       if (section >= chip->ecc.steps)
+               return -ERANGE;
+
+       if (!section) {
+               /* The first byte is bad block mask flag. */
+               oob_region->length = NFC_SYS_DATA_SIZE - 1;
+               oob_region->offset = 1;
+       } else {
+               oob_region->length = NFC_SYS_DATA_SIZE;
+               oob_region->offset = section * NFC_SYS_DATA_SIZE;
+       }
+
+       return 0;
+}
+
+static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
+                               struct mtd_oob_region *oob_region)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+
+       if (section)
+               return -ERANGE;
+
+       oob_region->offset = NFC_SYS_DATA_SIZE * chip->ecc.steps;
+       oob_region->length = mtd->oobsize - oob_region->offset;
+
+       return 0;
+}
+
+static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
+       .free = rk_nfc_ooblayout_free,
+       .ecc = rk_nfc_ooblayout_ecc,
+};
+
+static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       struct nand_ecc_ctrl *ecc = &chip->ecc;
+       const u8 *strengths = nfc->cfg->ecc_strengths;
+       u8 max_strength, nfc_max_strength;
+       int i;
+
+       nfc_max_strength = nfc->cfg->ecc_strengths[0];
+       /* If optional dt settings not present. */
+       if (!ecc->size || !ecc->strength ||
+           ecc->strength > nfc_max_strength) {
+               /* Use datasheet requirements. */
+               ecc->strength = chip->base.eccreq.strength;
+               ecc->size = chip->base.eccreq.step_size;
+
+               /*
+                * Align eccstrength and eccsize.
+                * This controller only supports 512 and 1024 sizes.
+                */
+               if (chip->ecc.size < 1024) {
+                       if (mtd->writesize > 512) {
+                               chip->ecc.size = 1024;
+                               chip->ecc.strength <<= 1;
+                       } else {
+                               dev_err(dev, "ecc.size not supported\n");
+                               return -EINVAL;
+                       }
+               } else {
+                       chip->ecc.size = 1024;
+               }
+
+               ecc->steps = mtd->writesize / ecc->size;
+
+               /*
+                * HW ECC always request ECC bytes for 1024 bytes blocks.
+                * 4 Bytes is oob for sys data.
+                */
+               max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
+                                fls(8 * 1024);
+               if (max_strength > nfc_max_strength)
+                       max_strength = nfc_max_strength;
+
+               for (i = 0; i < 4; i++) {
+                       if (max_strength >= strengths[i])
+                               break;
+               }
+
+               if (i >= 4) {
+                       dev_err(nfc->dev, "unsupported strength\n");
+                       return -ENOTSUPP;
+               }
+
+               ecc->strength = strengths[i];
+       }
+       ecc->steps = mtd->writesize / ecc->size;
+       ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
+       /* HW ECC always work with even numbers of ECC bytes. */
+       ecc->bytes = ALIGN(ecc->bytes, 2);
+
+       rk_nfc_hw_ecc_setup(chip, ecc, ecc->strength);
+
+       return 0;
+}
+
+static int rk_nfc_attach_chip(struct nand_chip *chip)
+{
+       struct mtd_info *mtd = nand_to_mtd(chip);
+       struct device *dev = mtd->dev.parent;
+       struct rk_nfc *nfc = nand_get_controller_data(chip);
+       struct rk_nfc_nand_chip *rk_nand = to_rk_nand(chip);
+       struct nand_ecc_ctrl *ecc = &chip->ecc;
+       int len;
+       int ret;
+
+       if (chip->options & NAND_BUSWIDTH_16) {
+               dev_err(dev, "16 bits bus width not supported");
+               return -EINVAL;
+       }
+
+       if (ecc->mode != NAND_ECC_HW)
+               return 0;
+
+       ret = rk_nfc_ecc_init(dev, mtd);
+       if (ret)
+               return ret;
+       rk_nand->spare_per_sector = ecc->bytes + NFC_SYS_DATA_SIZE;
+
+       /* Check buffer first, avoid duplicate alloc buffer. */
+       if (nfc->buffer)
+               return 0;
+
+       len = mtd->writesize + mtd->oobsize;
+       nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL | GFP_DMA);
+       if (!nfc->buffer)
+               return -ENOMEM;
+
+       nfc->page_buf = nfc->buffer;
+       len = ecc->steps * NFC_MAX_OOB_PER_STEP;
+       nfc->oob_buf = devm_kzalloc(dev, len, GFP_KERNEL | GFP_DMA);
+       if (!nfc->oob_buf) {
+               devm_kfree(dev, nfc->buffer);
+               nfc->buffer = NULL;
+               nfc->oob_buf = NULL;
+               return -ENOMEM;
+       }
+
+       chip->ecc.write_page_raw = rk_nfc_write_page_raw;
+       chip->ecc.write_page = rk_nfc_write_page_hwecc;
+       chip->ecc.write_oob_raw = rk_nfc_write_oob_std;
+       chip->ecc.write_oob = rk_nfc_write_oob_std;
+
+       chip->ecc.read_page_raw = rk_nfc_read_page_raw;
+       chip->ecc.read_page = rk_nfc_read_page_hwecc;
+       chip->ecc.read_oob_raw = rk_nfc_read_oob_std;
+       chip->ecc.read_oob = rk_nfc_read_oob_std;
+
+       return 0;
+}
+
+static const struct nand_controller_ops rk_nfc_controller_ops = {
+       .attach_chip = rk_nfc_attach_chip,
+       .exec_op = rk_nfc_exec_op,
+       .setup_data_interface = rk_nfc_setup_data_interface,
+};
+
+static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
+                                struct device_node *np)
+{
+       struct rk_nfc_nand_chip *nand;
+       struct nand_chip *chip;
+       struct mtd_info *mtd;
+       int nsels;
+       u32 tmp;
+       int ret;
+       int i;
+
+       if (!of_get_property(np, "reg", &nsels))
+               return -ENODEV;
+       nsels /= sizeof(u32);
+       if (!nsels || nsels > NFC_MAX_NSELS) {
+               dev_err(dev, "invalid reg property size %d\n", nsels);
+               return -EINVAL;
+       }
+
+       nand = devm_kzalloc(dev, sizeof(*nand) + nsels * sizeof(u8),
+                           GFP_KERNEL);
+       if (!nand)
+               return -ENOMEM;
+
+       nand->nsels = nsels;
+       for (i = 0; i < nsels; i++) {
+               ret = of_property_read_u32_index(np, "reg", i, &tmp);
+               if (ret) {
+                       dev_err(dev, "reg property failure : %d\n", ret);
+                       return ret;
+               }
+
+               if (tmp >= NFC_MAX_NSELS) {
+                       dev_err(dev, "invalid CS: %u\n", tmp);
+                       return -EINVAL;
+               }
+
+               if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
+                       dev_err(dev, "CS %u already assigned\n", tmp);
+                       return -EINVAL;
+               }
+
+               nand->sels[i] = tmp;
+       }
+
+       chip = &nand->chip;
+       chip->controller = &nfc->controller;
+
+       nand_set_flash_node(chip, np);
+
+       nand_set_controller_data(chip, nfc);
+
+       chip->options |= NAND_USE_BOUNCE_BUFFER | NAND_NO_SUBPAGE_WRITE;
+       chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
+
+       /* Set default mode in case dt entry is missing. */
+       chip->ecc.mode = NAND_ECC_HW;
+
+       mtd = nand_to_mtd(chip);
+       mtd->owner = THIS_MODULE;
+       mtd->dev.parent = dev;
+
+       if (!mtd->name) {
+               dev_err(nfc->dev, "NAND label property is mandatory\n");
+               return -EINVAL;
+       }
+
+       mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
+       rk_nfc_hw_init(nfc);
+       ret = nand_scan(chip, nsels);
+       if (ret)
+               return ret;
+
+       if (chip->options & NAND_IS_BOOT_MEDIUM) {
+               ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
+               nand->boot_blks = ret ? 0 : tmp;
+
+               ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
+                                          &tmp);
+               nand->boot_ecc = ret ? chip->ecc.strength : tmp;
+       }
+
+       ret = mtd_device_register(mtd, NULL, 0);
+       if (ret) {
+               dev_err(dev, "mtd parse partition error\n");
+               nand_release(chip);
+               return ret;
+       }
+
+       list_add_tail(&nand->node, &nfc->chips);
+
+       return 0;
+}
+
+static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
+{
+       struct device_node *np = dev->of_node;
+       struct device_node *nand_np;
+       int ret = -EINVAL;
+       int tmp;
+
+       for_each_child_of_node(np, nand_np) {
+               tmp = rk_nfc_nand_chip_init(dev, nfc, nand_np);
+               if (tmp) {
+                       of_node_put(nand_np);
+                       return ret;
+               }
+               /* At least one nand chip is initialized. */
+               ret = 0;
+       }
+
+       return ret;
+}
+
+static struct nfc_cfg nfc_v6_cfg = {
+               .type                   = NFC_V6,
+               .ecc_strengths          = {60, 40, 24, 16},
+               .ecc_cfgs               = {
+                       0x00040011, 0x00040001, 0x00000011, 0x00000001,
+               },
+               .flctl_off              = 0x08,
+               .bchctl_off             = 0x0C,
+               .dma_cfg_off            = 0x10,
+               .dma_data_buf_off       = 0x14,
+               .dma_oob_buf_off        = 0x18,
+               .dma_st_off             = 0x1C,
+               .bch_st_off             = 0x20,
+               .randmz_off             = 0x150,
+               .int_en_off             = 0x16C,
+               .int_clr_off            = 0x170,
+               .int_st_off             = 0x174,
+               .oob0_off               = 0x200,
+               .oob1_off               = 0x230,
+               .ecc0                   = {
+                       .err_flag_bit   = 2,
+                       .low            = 3,
+                       .low_mask       = 0x1F,
+                       .low_bn         = 5,
+                       .high           = 27,
+                       .high_mask      = 0x1,
+               },
+               .ecc1                   = {
+                       .err_flag_bit   = 15,
+                       .low            = 16,
+                       .low_mask       = 0x1F,
+                       .low_bn         = 5,
+                       .high           = 29,
+                       .high_mask      = 0x1,
+               },
+};
+
+static struct nfc_cfg nfc_v8_cfg = {
+               .type                   = NFC_V8,
+               .ecc_strengths          = {16, 16, 16, 16},
+               .ecc_cfgs               = {
+                       0x00000001, 0x00000001, 0x00000001, 0x00000001,
+               },
+               .flctl_off              = 0x08,
+               .bchctl_off             = 0x0C,
+               .dma_cfg_off            = 0x10,
+               .dma_data_buf_off       = 0x14,
+               .dma_oob_buf_off        = 0x18,
+               .dma_st_off             = 0x1C,
+               .bch_st_off             = 0x20,
+               .bch_st_off             = 0x20,
+               .randmz_off             = 0x150,
+               .int_en_off             = 0x16C,
+               .int_clr_off            = 0x170,
+               .int_st_off             = 0x174,
+               .oob0_off               = 0x200,
+               .oob1_off               = 0x230,
+               .ecc0                   = {
+                       .err_flag_bit   = 2,
+                       .low            = 3,
+                       .low_mask       = 0x1F,
+                       .low_bn         = 5,
+                       .high           = 27,
+                       .high_mask      = 0x1,
+               },
+               .ecc1                   = {
+                       .err_flag_bit   = 15,
+                       .low            = 16,
+                       .low_mask       = 0x1F,
+                       .low_bn         = 5,
+                       .high           = 29,
+                       .high_mask      = 0x1,
+               },
+};
+
+static struct nfc_cfg nfc_v9_cfg = {
+               .type                   = NFC_V9,
+               .ecc_strengths          = {70, 60, 40, 16},
+               .ecc_cfgs               = {
+                       0x00000001, 0x06000001, 0x04000001, 0x02000001,
+               },
+               .flctl_off              = 0x10,
+               .bchctl_off             = 0x20,
+               .dma_cfg_off            = 0x30,
+               .dma_data_buf_off       = 0x34,
+               .dma_oob_buf_off        = 0x38,
+               .dma_st_off             = 0x3C,
+               .bch_st_off             = 0x150,
+               .randmz_off             = 0x208,
+               .int_en_off             = 0x120,
+               .int_clr_off            = 0x124,
+               .int_st_off             = 0x128,
+               .oob0_off               = 0x200,
+               .oob1_off               = 0x204,
+               .ecc0                   = {
+                       .err_flag_bit   = 2,
+                       .low            = 3,
+                       .low_mask       = 0x7F,
+                       .low_bn         = 7,
+                       .high           = 0,
+                       .high_mask      = 0x0,
+               },
+               .ecc1                   = {
+                       .err_flag_bit   = 18,
+                       .low            = 19,
+                       .low_mask       = 0x7F,
+                       .low_bn         = 7,
+                       .high           = 0,
+                       .high_mask      = 0x0,
+               },
+};
+
+static const struct of_device_id rk_nfc_id_table[] = {
+       {.compatible = "rockchip,px30-nfc",
+               .data = &nfc_v9_cfg },
+       {.compatible = "rockchip,rk2928-nfc",
+               .data = &nfc_v6_cfg },
+       {.compatible = "rockchip,rv1108-nfc",
+               .data = &nfc_v8_cfg },
+       { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
+
+static int rk_nfc_probe(struct platform_device *pdev)
+{
+       struct device *dev = &pdev->dev;
+       struct rk_nfc *nfc;
+       struct resource *res;
+       int ret, irq;
+
+       nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
+       if (!nfc)
+               return -ENOMEM;
+
+       nand_controller_init(&nfc->controller);
+       INIT_LIST_HEAD(&nfc->chips);
+       nfc->controller.ops = &rk_nfc_controller_ops;
+
+       nfc->cfg = of_device_get_match_data(dev);
+       nfc->dev = dev;
+
+       init_completion(&nfc->done);
+
+       res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+       nfc->regs = devm_ioremap_resource(dev, res);
+       if (IS_ERR(nfc->regs)) {
+               ret = PTR_ERR(nfc->regs);
+               goto release_nfc;
+       }
+
+       nfc->clk.nfc_clk = devm_clk_get(dev, "nfc");
+       if (IS_ERR(nfc->clk.nfc_clk)) {
+               dev_dbg(dev, "no nfc clk\n");
+               /* Some old device, sush as rk3066, has no nfc clk. */
+       }
+
+       nfc->clk.ahb_clk = devm_clk_get(dev, "ahb");
+       if (IS_ERR(nfc->clk.ahb_clk)) {
+               dev_err(dev, "no ahb clk\n");
+               ret = PTR_ERR(nfc->clk.ahb_clk);
+               goto release_nfc;
+       }
+
+       ret = rk_nfc_enable_clk(dev, &nfc->clk);
+       if (ret)
+               goto release_nfc;
+
+       irq = platform_get_irq(pdev, 0);
+       if (irq < 0) {
+               dev_err(dev, "no nfc irq resource\n");
+               ret = -EINVAL;
+               goto clk_disable;
+       }
+
+       writel(0, nfc->regs + nfc->cfg->int_en_off);
+       ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
+       if (ret) {
+               dev_err(dev, "failed to request nfc irq\n");
+               goto clk_disable;
+       }
+
+       platform_set_drvdata(pdev, nfc);
+
+       ret = rk_nfc_nand_chips_init(dev, nfc);
+       if (ret) {
+               dev_err(dev, "failed to init nand chips\n");
+               goto clk_disable;
+       }
+       return 0;
+
+clk_disable:
+       rk_nfc_disable_clk(&nfc->clk);
+release_nfc:
+       return ret;
+}
+
+static int rk_nfc_remove(struct platform_device *pdev)
+{
+       struct rk_nfc *nfc = platform_get_drvdata(pdev);
+       struct rk_nfc_nand_chip *nand;
+
+       while (!list_empty(&nfc->chips)) {
+               nand = list_first_entry(&nfc->chips, struct rk_nfc_nand_chip,
+                                       node);
+               nand_release(&nand->chip);
+               list_del(&nand->node);
+       }
+
+       rk_nfc_disable_clk(&nfc->clk);
+
+       return 0;
+}
+
+static int __maybe_unused rk_nfc_suspend(struct device *dev)
+{
+       struct rk_nfc *nfc = dev_get_drvdata(dev);
+
+       rk_nfc_disable_clk(&nfc->clk);
+
+       return 0;
+}
+
+static int __maybe_unused rk_nfc_resume(struct device *dev)
+{
+       struct rk_nfc *nfc = dev_get_drvdata(dev);
+       struct rk_nfc_nand_chip *nand;
+       struct nand_chip *chip;
+       int ret;
+       u32 i;
+
+       ret = rk_nfc_enable_clk(dev, &nfc->clk);
+       if (ret)
+               return ret;
+
+       /* Reset NAND chip if VCC was powered off. */
+       list_for_each_entry(nand, &nfc->chips, node) {
+               chip = &nand->chip;
+               for (i = 0; i < nand->nsels; i++)
+                       nand_reset(chip, i);
+       }
+
+       return 0;
+}
+
+static const struct dev_pm_ops rk_nfc_pm_ops = {
+       SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
+};
+
+static struct platform_driver rk_nfc_driver = {
+       .probe = rk_nfc_probe,
+       .remove = rk_nfc_remove,
+       .driver = {
+               .name = "rockchip-nfc",
+               .of_match_table = rk_nfc_id_table,
+               .pm = &rk_nfc_pm_ops,
+       },
+};
+
+module_platform_driver(rk_nfc_driver);
+
+MODULE_LICENSE("Dual MIT/GPL");
+MODULE_AUTHOR("Yifeng Zhao <yifeng.z...@rock-chips.com>");
+MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
+MODULE_ALIAS("platform:rockchip-nand-controller");
-- 
2.17.1



Reply via email to