On 6/8/20 1:40 PM, SeongJae Park wrote:
> From: SeongJae Park <sjp...@amazon.de>
> 
> This commit implements DAMON's basic access check and region based
> sampling mechanisms.  This change would seems make no sense, mainly
> because it is only a part of the DAMON's logics.  Following two commits
> will make more sense.
> 
> Basic Access Check
> ------------------
> 
> DAMON basically reports what pages are how frequently accessed.  Note
> that the frequency is not an absolute number of accesses, but a relative
> frequency among the pages of the target workloads.
> 
> Users can control the resolution of the reports by setting two time
> intervals, ``sampling interval`` and ``aggregation interval``.  In
> detail, DAMON checks access to each page per ``sampling interval``,
> aggregates the results (counts the number of the accesses to each page),
> and reports the aggregated results per ``aggregation interval``.  For
> the access check of each page, DAMON uses the Accessed bits of PTEs.
> 
> This is thus similar to common periodic access checks based access
> tracking mechanisms, which overhead is increasing as the size of the
> target process grows.
> 
> Region Based Sampling
> ---------------------
> 
> To avoid the unbounded increase of the overhead, DAMON groups a number
> of adjacent pages that assumed to have same access frequencies into a
> region.  As long as the assumption (pages in a region have same access
> frequencies) is kept, only one page in the region is required to be
> checked.  Thus, for each ``sampling interval``, DAMON randomly picks one
> page in each region and clears its Accessed bit.  After one more
> ``sampling interval``, DAMON reads the Accessed bit of the page and
> increases the access frequency of the region if the bit has set
> meanwhile.  Therefore, the monitoring overhead is controllable by
> setting the number of regions.
> 
> Nonetheless, this scheme cannot preserve the quality of the output if
> the assumption is not kept.  Following commit will introduce how we can
> make the guarantee with best effort.
> 
> Signed-off-by: SeongJae Park <sjp...@amazon.de>
> Reviewed-by: Leonard Foerster <foers...@amazon.de>
> ---
>  include/linux/damon.h |  48 +++-
>  mm/damon.c            | 615 +++++++++++++++++++++++++++++++++++++++++-
>  2 files changed, 660 insertions(+), 3 deletions(-)
> 
> diff --git a/include/linux/damon.h b/include/linux/damon.h
> index 135633334929..f0fe4520a4e9 100644
> --- a/include/linux/damon.h
> +++ b/include/linux/damon.h
> @@ -11,6 +11,8 @@
>  #define _DAMON_H_
>  
>  #include <linux/random.h>
> +#include <linux/mutex.h>
> +#include <linux/time64.h>
>  #include <linux/types.h>
>  
>  /**
> @@ -44,11 +46,55 @@ struct damon_task {
>  };
>  
>  /**
> - * struct damon_ctx - Represents a context for each monitoring.
> + * struct damon_ctx - Represents a context for each monitoring.  This is the
> + * main interface that allows users to set the attributes and get the results
> + * of the monitoring.
> + *
> + * For each monitoring request (damon_start()), a kernel thread for the
> + * monitoring is created.  The pointer to the thread is stored in @kdamond.
> + *
> + * @sample_interval:         The time between access samplings.
> + * @aggr_interval:           The time between monitor results aggregations.
> + * @min_nr_regions:          The number of initial monitoring regions.
> + *
> + * For each @sample_interval, DAMON checks whether each region is accessed or
> + * not.  It aggregates and keeps the access information (number of accesses 
> to
> + * each region) for @aggr_interval time.  All time intervals are in
> + * micro-seconds.
> + *
> + * @kdamond:         Kernel thread who does the monitoring.
> + * @kdamond_stop:    Notifies whether kdamond should stop.
> + * @kdamond_lock:    Mutex for the synchronizations with @kdamond.
> + *
> + * The monitoring thread sets @kdamond to NULL when it terminates.  
> Therefore,
> + * users can know whether the monitoring is ongoing or terminated by reading
> + * @kdamond.  Also, users can ask @kdamond to be terminated by writing 
> non-zero
> + * to @kdamond_stop.  Reads and writes to @kdamond and @kdamond_stop from
> + * outside of the monitoring thread must be protected by @kdamond_lock.
> + *
> + * Note that the monitoring thread protects only @kdamond and @kdamond_stop 
> via
> + * @kdamond_lock.  Accesses to other fields must be protected by themselves.
> + *
>   * @tasks_list:              Head of monitoring target tasks (&damon_task) 
> list.
>   */
>  struct damon_ctx {
> +     unsigned long sample_interval;
> +     unsigned long aggr_interval;
> +     unsigned long min_nr_regions;
> +
> +     struct timespec64 last_aggregation;
> +
> +     struct task_struct *kdamond;
> +     bool kdamond_stop;
> +     struct mutex kdamond_lock;
> +
>       struct list_head tasks_list;    /* 'damon_task' objects */
>  };
>  
> +int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids);
> +int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
> +             unsigned long aggr_int, unsigned long min_nr_reg);
> +int damon_start(struct damon_ctx *ctx);
> +int damon_stop(struct damon_ctx *ctx);
> +
>  #endif
> diff --git a/mm/damon.c b/mm/damon.c
> index 170e8a694dbe..fa14ff7dd31a 100644
> --- a/mm/damon.c
> +++ b/mm/damon.c
> @@ -9,18 +9,29 @@
>   * This file is constructed in below parts.
>   *
>   * - Functions and macros for DAMON data structures
> + * - Functions for the initial monitoring target regions construction
> + * - Functions for the access checking of the regions
> + * - Functions for DAMON core logics and features
> + * - Functions for the DAMON programming interface
>   * - Functions for the module loading/unloading
> - *
> - * The core parts are not implemented yet.
>   */
>  
>  #define pr_fmt(fmt) "damon: " fmt
>  
>  #include <linux/damon.h>
> +#include <linux/delay.h>
> +#include <linux/kthread.h>
>  #include <linux/mm.h>
>  #include <linux/module.h>
> +#include <linux/page_idle.h>
> +#include <linux/random.h>
> +#include <linux/sched/mm.h>
> +#include <linux/sched/task.h>
>  #include <linux/slab.h>
>  
> +/* Minimal region size.  Every damon_region is aligned by this. */
> +#define MIN_REGION PAGE_SIZE
> +
>  /*
>   * Functions and macros for DAMON data structures
>   */
> @@ -167,6 +178,606 @@ static unsigned int nr_damon_regions(struct damon_task 
> *t)
>       return nr_regions;
>  }
>  
> +/*
> + * Get the mm_struct of the given task
> + *
> + * Caller _must_ put the mm_struct after use, unless it is NULL.
> + *
> + * Returns the mm_struct of the task on success, NULL on failure
> + */
> +static struct mm_struct *damon_get_mm(struct damon_task *t)
> +{
> +     struct task_struct *task;
> +     struct mm_struct *mm;
> +
> +     task = damon_get_task_struct(t);
> +     if (!task)
> +             return NULL;
> +
> +     mm = get_task_mm(task);
> +     put_task_struct(task);
> +     return mm;
> +}
> +
> +/*
> + * Functions for the initial monitoring target regions construction
> + */
> +
> +/*
> + * Size-evenly split a region into 'nr_pieces' small regions
> + *
> + * Returns 0 on success, or negative error code otherwise.
> + */
> +static int damon_split_region_evenly(struct damon_ctx *ctx,
> +             struct damon_region *r, unsigned int nr_pieces)
> +{
> +     unsigned long sz_orig, sz_piece, orig_end;
> +     struct damon_region *n = NULL, *next;
> +     unsigned long start;
> +
> +     if (!r || !nr_pieces)
> +             return -EINVAL;
> +
> +     orig_end = r->vm_end;
> +     sz_orig = r->vm_end - r->vm_start;
> +     sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, MIN_REGION);
> +
> +     if (!sz_piece)
> +             return -EINVAL;
> +
> +     r->vm_end = r->vm_start + sz_piece;
> +     next = damon_next_region(r);
> +     for (start = r->vm_end; start + sz_piece <= orig_end;
> +                     start += sz_piece) {
> +             n = damon_new_region(ctx, start, start + sz_piece);
> +             if (!n)
> +                     return -ENOMEM;
> +             damon_insert_region(n, r, next);
> +             r = n;
> +     }
> +     /* complement last region for possible rounding error */
> +     if (n)
> +             n->vm_end = orig_end;
> +
> +     return 0;
> +}
> +
> +struct region {
> +     unsigned long start;
> +     unsigned long end;
> +};
> +
> +static unsigned long sz_region(struct region *r)
> +{
> +     return r->end - r->start;
> +}
> +
> +static void swap_regions(struct region *r1, struct region *r2)
> +{
> +     struct region tmp;
> +
> +     tmp = *r1;
> +     *r1 = *r2;
> +     *r2 = tmp;
> +}
> +
> +/*
> + * Find three regions separated by two biggest unmapped regions
> + *
> + * vma               the head vma of the target address space
> + * regions   an array of three 'struct region's that results will be saved
> + *
> + * This function receives an address space and finds three regions in it 
> which
> + * separated by the two biggest unmapped regions in the space.  Please refer 
> to
> + * below comments of 'damon_init_regions_of()' function to know why this is
> + * necessary.
> + *
> + * Returns 0 if success, or negative error code otherwise.
> + */
> +static int damon_three_regions_in_vmas(struct vm_area_struct *vma,
> +             struct region regions[3])
> +{
> +     struct region gap = {0}, first_gap = {0}, second_gap = {0};
> +     struct vm_area_struct *last_vma = NULL;
> +     unsigned long start = 0;
> +
> +     /* Find two biggest gaps so that first_gap > second_gap > others */
> +     for (; vma; vma = vma->vm_next) {

Since vm_area_struct already maintains information about the largest gap below 
this vma
in the mm_rb rbtree, walking the vma via mm_rb instead of the linked list, and 
skipping
the ones with don't fit the gap requirement via vma->rb_subtree_gap helps avoid 
the
extra comparisons in this function.

I measured the following implementation to be considerably faster as the number 
of
vmas grows for a process damon would attach to:

-static int damon_three_regions_in_vmas(struct vm_area_struct *vma,
+static int damon_three_regions_in_vmas(struct rb_root *root,
                struct region regions[3])
 {
+       struct rb_node *nd = NULL;
        struct region gap = {0}, first_gap = {0}, second_gap = {0};
-       struct vm_area_struct *last_vma = NULL;
+       struct vm_area_struct *vma = NULL;
        unsigned long start = 0;
 
        /* Find two biggest gaps so that first_gap > second_gap > others */
-       for (; vma; vma = vma->vm_next) {
-               if (!last_vma) {
-                       start = vma->vm_start;
-                       last_vma = vma;
+       for (nd = rb_first(root); nd; nd = rb_next(nd)) {
+               vma = rb_entry(nd, struct vm_area_struct, vm_rb);
+
+               if (vma->rb_subtree_gap < sz_region(&second_gap)) {
+                       /*
+                        * Skip this vma if the largest gap at this vma is still
+                        * smaller than what we have encountered so far.
+                        */
                        continue;
                }
-               gap.start = last_vma->vm_end;
+               if (!vma->vm_prev) {
+                       /* This is the first vma. */
+                       start = vma->vm_start;
+                       continue;
+               }
+               gap.start = vma->vm_prev->vm_end;
                gap.end = vma->vm_start;
                if (sz_region(&gap) > sz_region(&second_gap)) {
                        swap_regions(&gap, &second_gap);
                        if (sz_region(&second_gap) > sz_region(&first_gap))
                                swap_regions(&second_gap, &first_gap);
                }
-               last_vma = vma;
        }
 
        if (!sz_region(&second_gap) || !sz_region(&first_gap))
@@ -35,7 +44,7 @@
        regions[1].start = ALIGN(first_gap.end, MIN_REGION);
        regions[1].end = ALIGN(second_gap.start, MIN_REGION);
        regions[2].start = ALIGN(second_gap.end, MIN_REGION);
-       regions[2].end = ALIGN(last_vma->vm_end, MIN_REGION);
+       regions[2].end = ALIGN(vma->vm_end, MIN_REGION);
 
        return 0;
 }


> +             if (!last_vma) {
> +                     start = vma->vm_start;
> +                     last_vma = vma;
> +                     continue;
> +             }
> +             gap.start = last_vma->vm_end;
> +             gap.end = vma->vm_start;
> +             if (sz_region(&gap) > sz_region(&second_gap)) {
> +                     swap_regions(&gap, &second_gap);
> +                     if (sz_region(&second_gap) > sz_region(&first_gap))
> +                             swap_regions(&second_gap, &first_gap);
> +             }
> +             last_vma = vma;
> +     }
> +
> +     if (!sz_region(&second_gap) || !sz_region(&first_gap))
> +             return -EINVAL;
> +
> +     /* Sort the two biggest gaps by address */
> +     if (first_gap.start > second_gap.start)
> +             swap_regions(&first_gap, &second_gap);
> +
> +     /* Store the result */
> +     regions[0].start = ALIGN(start, MIN_REGION);
> +     regions[0].end = ALIGN(first_gap.start, MIN_REGION);
> +     regions[1].start = ALIGN(first_gap.end, MIN_REGION);
> +     regions[1].end = ALIGN(second_gap.start, MIN_REGION);
> +     regions[2].start = ALIGN(second_gap.end, MIN_REGION);
> +     regions[2].end = ALIGN(last_vma->vm_end, MIN_REGION);
> +
> +     return 0;
> +}
> +
> +/*
> + * Get the three regions in the given task
> + *
> + * Returns 0 on success, negative error code otherwise.
> + */
> +static int damon_three_regions_of(struct damon_task *t,
> +                             struct region regions[3])
> +{
> +     struct mm_struct *mm;
> +     int rc;
> +
> +     mm = damon_get_mm(t);
> +     if (!mm)
> +             return -EINVAL;
> +
> +     down_read(&mm->mmap_sem);
> +     rc = damon_three_regions_in_vmas(mm->mmap, regions);
> +     up_read(&mm->mmap_sem);
> +
> +     mmput(mm);
> +     return rc;
> +}
> +
> +/*
> + * Initialize the monitoring target regions for the given task
> + *
> + * t the given target task
> + *
> + * Because only a number of small portions of the entire address space
> + * is actually mapped to the memory and accessed, monitoring the unmapped
> + * regions is wasteful.  That said, because we can deal with small noises,
> + * tracking every mapping is not strictly required but could even incur a 
> high
> + * overhead if the mapping frequently changes or the number of mappings is
> + * high.  Nonetheless, this may seems very weird.  DAMON's dynamic regions
> + * adjustment mechanism, which will be implemented with following commit will
> + * make this more sense.
> + *
> + * For the reason, we convert the complex mappings to three distinct regions
> + * that cover every mapped area of the address space.  Also the two gaps
> + * between the three regions are the two biggest unmapped areas in the given
> + * address space.  In detail, this function first identifies the start and 
> the
> + * end of the mappings and the two biggest unmapped areas of the address 
> space.
> + * Then, it constructs the three regions as below:
> + *
> + *     [mappings[0]->start, big_two_unmapped_areas[0]->start)
> + *     [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
> + *     [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
> + *
> + * As usual memory map of processes is as below, the gap between the heap and
> + * the uppermost mmap()-ed region, and the gap between the lowermost 
> mmap()-ed
> + * region and the stack will be two biggest unmapped regions.  Because these
> + * gaps are exceptionally huge areas in usual address space, excluding these
> + * two biggest unmapped regions will be sufficient to make a trade-off.
> + *
> + *   <heap>
> + *   <BIG UNMAPPED REGION 1>
> + *   <uppermost mmap()-ed region>
> + *   (other mmap()-ed regions and small unmapped regions)
> + *   <lowermost mmap()-ed region>
> + *   <BIG UNMAPPED REGION 2>
> + *   <stack>
> + */
> +static void damon_init_regions_of(struct damon_ctx *c, struct damon_task *t)
> +{
> +     struct damon_region *r, *m = NULL;
> +     struct region regions[3];
> +     int i;
> +
> +     if (damon_three_regions_of(t, regions)) {
> +             pr_err("Failed to get three regions of task %d\n", t->pid);
> +             return;
> +     }
> +
> +     /* Set the initial three regions of the task */
> +     for (i = 0; i < 3; i++) {
> +             r = damon_new_region(c, regions[i].start, regions[i].end);
> +             if (!r) {
> +                     pr_err("%d'th init region creation failed\n", i);
> +                     return;
> +             }
> +             damon_add_region(r, t);
> +             if (i == 1)
> +                     m = r;
> +     }
> +
> +     /* Split the middle region into 'min_nr_regions - 2' regions */
> +     if (damon_split_region_evenly(c, m, c->min_nr_regions - 2))
> +             pr_warn("Init middle region failed to be split\n");
> +}
> +
> +/* Initialize '->regions_list' of every task */
> +static void kdamond_init_regions(struct damon_ctx *ctx)
> +{
> +     struct damon_task *t;
> +
> +     damon_for_each_task(t, ctx)
> +             damon_init_regions_of(ctx, t);
> +}
> +
> +/*
> + * Functions for the access checking of the regions
> + */
> +
> +static void damon_mkold(struct mm_struct *mm, unsigned long addr)
> +{
> +     pte_t *pte = NULL;
> +     pmd_t *pmd = NULL;
> +     spinlock_t *ptl;
> +
> +     if (follow_pte_pmd(mm, addr, NULL, &pte, &pmd, &ptl))
> +             return;
> +
> +     if (pte) {
> +             if (pte_young(*pte)) {
> +                     clear_page_idle(pte_page(*pte));
> +                     set_page_young(pte_page(*pte));
> +             }
> +             *pte = pte_mkold(*pte);
> +             pte_unmap_unlock(pte, ptl);
> +             return;
> +     }
> +
> +#ifdef CONFIG_TRANSPARENT_HUGEPAGE
> +     if (pmd_young(*pmd)) {
> +             clear_page_idle(pmd_page(*pmd));
> +             set_page_young(pmd_page(*pmd));
> +     }
> +     *pmd = pmd_mkold(*pmd);
> +     spin_unlock(ptl);
> +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
> +}
> +
> +static void damon_prepare_access_check(struct damon_ctx *ctx,
> +                     struct mm_struct *mm, struct damon_region *r)
> +{
> +     r->sampling_addr = damon_rand(r->vm_start, r->vm_end);
> +
> +     damon_mkold(mm, r->sampling_addr);
> +}
> +
> +static void kdamond_prepare_access_checks(struct damon_ctx *ctx)
> +{
> +     struct damon_task *t;
> +     struct mm_struct *mm;
> +     struct damon_region *r;
> +
> +     damon_for_each_task(t, ctx) {
> +             mm = damon_get_mm(t);
> +             if (!mm)
> +                     continue;
> +             damon_for_each_region(r, t)
> +                     damon_prepare_access_check(ctx, mm, r);
> +             mmput(mm);
> +     }
> +}
> +
> +static bool damon_young(struct mm_struct *mm, unsigned long addr,
> +                     unsigned long *page_sz)
> +{
> +     pte_t *pte = NULL;
> +     pmd_t *pmd = NULL;
> +     spinlock_t *ptl;
> +     bool young = false;
> +
> +     if (follow_pte_pmd(mm, addr, NULL, &pte, &pmd, &ptl))
> +             return false;
> +
> +     *page_sz = PAGE_SIZE;
> +     if (pte) {
> +             young = pte_young(*pte);
> +             pte_unmap_unlock(pte, ptl);
> +             return young;
> +     }
> +
> +#ifdef CONFIG_TRANSPARENT_HUGEPAGE
> +     young = pmd_young(*pmd);
> +     spin_unlock(ptl);
> +     *page_sz = ((1UL) << HPAGE_PMD_SHIFT);
> +#endif       /* CONFIG_TRANSPARENT_HUGEPAGE */
> +
> +     return young;
> +}
> +
> +/*
> + * Check whether the region was accessed after the last preparation
> + *
> + * mm        'mm_struct' for the given virtual address space
> + * r the region to be checked
> + */
> +static void damon_check_access(struct damon_ctx *ctx,
> +                            struct mm_struct *mm, struct damon_region *r)
> +{
> +     static struct mm_struct *last_mm;
> +     static unsigned long last_addr;
> +     static unsigned long last_page_sz = PAGE_SIZE;
> +     static bool last_accessed;
> +
> +     /* If the region is in the last checked page, reuse the result */
> +     if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) ==
> +                             ALIGN_DOWN(r->sampling_addr, last_page_sz))) {
> +             if (last_accessed)
> +                     r->nr_accesses++;
> +             return;
> +     }
> +
> +     last_accessed = damon_young(mm, r->sampling_addr, &last_page_sz);
> +     if (last_accessed)
> +             r->nr_accesses++;
> +
> +     last_mm = mm;
> +     last_addr = r->sampling_addr;
> +}
> +
> +static void kdamond_check_accesses(struct damon_ctx *ctx)
> +{
> +     struct damon_task *t;
> +     struct mm_struct *mm;
> +     struct damon_region *r;
> +
> +     damon_for_each_task(t, ctx) {
> +             mm = damon_get_mm(t);
> +             if (!mm)
> +                     continue;
> +             damon_for_each_region(r, t)
> +                     damon_check_access(ctx, mm, r);
> +             mmput(mm);
> +     }
> +}
> +
> +/*
> + * Functions for DAMON core logics and features
> + */
> +
> +/*
> + * damon_check_reset_time_interval() - Check if a time interval is elapsed.
> + * @baseline:        the time to check whether the interval has elapsed since
> + * @interval:        the time interval (microseconds)
> + *
> + * See whether the given time interval has passed since the given baseline
> + * time.  If so, it also updates the baseline to current time for next check.
> + *
> + * Return:   true if the time interval has passed, or false otherwise.
> + */
> +static bool damon_check_reset_time_interval(struct timespec64 *baseline,
> +             unsigned long interval)
> +{
> +     struct timespec64 now;
> +
> +     ktime_get_coarse_ts64(&now);
> +     if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
> +                     interval * 1000)
> +             return false;
> +     *baseline = now;
> +     return true;
> +}
> +
> +/*
> + * Check whether it is time to flush the aggregated information
> + */
> +static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
> +{
> +     return damon_check_reset_time_interval(&ctx->last_aggregation,
> +                     ctx->aggr_interval);
> +}
> +
> +/*
> + * Reset the aggregated monitoring results
> + */
> +static void kdamond_reset_aggregated(struct damon_ctx *c)
> +{
> +     struct damon_task *t;
> +     struct damon_region *r;
> +
> +     damon_for_each_task(t, c) {
> +             damon_for_each_region(r, t)
> +                     r->nr_accesses = 0;
> +     }
> +}
> +
> +/*
> + * Check whether current monitoring should be stopped
> + *
> + * The monitoring is stopped when either the user requested to stop, or all
> + * monitoring target tasks are dead.
> + *
> + * Returns true if need to stop current monitoring.
> + */
> +static bool kdamond_need_stop(struct damon_ctx *ctx)
> +{
> +     struct damon_task *t;
> +     struct task_struct *task;
> +     bool stop;
> +
> +     mutex_lock(&ctx->kdamond_lock);
> +     stop = ctx->kdamond_stop;
> +     mutex_unlock(&ctx->kdamond_lock);
> +     if (stop)
> +             return true;
> +
> +     damon_for_each_task(t, ctx) {
> +             task = damon_get_task_struct(t);
> +             if (task) {
> +                     put_task_struct(task);
> +                     return false;
> +             }
> +     }
> +
> +     return true;
> +}
> +
> +/*
> + * The monitoring daemon that runs as a kernel thread
> + */
> +static int kdamond_fn(void *data)
> +{
> +     struct damon_ctx *ctx = (struct damon_ctx *)data;
> +     struct damon_task *t;
> +     struct damon_region *r, *next;
> +
> +     pr_info("kdamond (%d) starts\n", ctx->kdamond->pid);
> +     kdamond_init_regions(ctx);
> +     while (!kdamond_need_stop(ctx)) {
> +             kdamond_prepare_access_checks(ctx);
> +
> +             usleep_range(ctx->sample_interval, ctx->sample_interval + 1);
> +
> +             kdamond_check_accesses(ctx);
> +
> +             if (kdamond_aggregate_interval_passed(ctx))
> +                     kdamond_reset_aggregated(ctx);
> +
> +     }
> +     damon_for_each_task(t, ctx) {
> +             damon_for_each_region_safe(r, next, t)
> +                     damon_destroy_region(r);
> +     }
> +     pr_debug("kdamond (%d) finishes\n", ctx->kdamond->pid);
> +     mutex_lock(&ctx->kdamond_lock);
> +     ctx->kdamond = NULL;
> +     mutex_unlock(&ctx->kdamond_lock);
> +
> +     do_exit(0);
> +}
> +
> +/*
> + * Functions for the DAMON programming interface
> + */
> +
> +static bool damon_kdamond_running(struct damon_ctx *ctx)
> +{
> +     bool running;
> +
> +     mutex_lock(&ctx->kdamond_lock);
> +     running = ctx->kdamond != NULL;
> +     mutex_unlock(&ctx->kdamond_lock);
> +
> +     return running;
> +}
> +
> +/**
> + * damon_start() - Starts monitoring with given context.
> + * @ctx:     monitoring context
> + *
> + * Return: 0 on success, negative error code otherwise.
> + */
> +int damon_start(struct damon_ctx *ctx)
> +{
> +     int err = -EBUSY;
> +
> +     mutex_lock(&ctx->kdamond_lock);
> +     if (!ctx->kdamond) {
> +             err = 0;
> +             ctx->kdamond_stop = false;
> +             ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond");
> +             if (IS_ERR(ctx->kdamond))
> +                     err = PTR_ERR(ctx->kdamond);
> +     }
> +     mutex_unlock(&ctx->kdamond_lock);
> +
> +     return err;
> +}
> +
> +/**
> + * damon_stop() - Stops monitoring of given context.
> + * @ctx:     monitoring context
> + *
> + * Return: 0 on success, negative error code otherwise.
> + */
> +int damon_stop(struct damon_ctx *ctx)
> +{
> +     mutex_lock(&ctx->kdamond_lock);
> +     if (ctx->kdamond) {
> +             ctx->kdamond_stop = true;
> +             mutex_unlock(&ctx->kdamond_lock);
> +             while (damon_kdamond_running(ctx))
> +                     usleep_range(ctx->sample_interval,
> +                                     ctx->sample_interval * 2);
> +             return 0;
> +     }
> +     mutex_unlock(&ctx->kdamond_lock);
> +
> +     return -EPERM;
> +}
> +
> +/**
> + * damon_set_pids() - Set monitoring target processes.
> + * @ctx:     monitoring context
> + * @pids:    array of target processes pids
> + * @nr_pids: number of entries in @pids
> + *
> + * This function should not be called while the kdamond is running.
> + *
> + * Return: 0 on success, negative error code otherwise.
> + */
> +int damon_set_pids(struct damon_ctx *ctx, int *pids, ssize_t nr_pids)
> +{
> +     ssize_t i;
> +     struct damon_task *t, *next;
> +
> +     damon_for_each_task_safe(t, next, ctx)
> +             damon_destroy_task(t);
> +
> +     for (i = 0; i < nr_pids; i++) {
> +             t = damon_new_task(pids[i]);
> +             if (!t) {
> +                     pr_err("Failed to alloc damon_task\n");
> +                     return -ENOMEM;
> +             }
> +             damon_add_task(ctx, t);
> +     }
> +
> +     return 0;
> +}
> +
> +/**
> + * damon_set_attrs() - Set attributes for the monitoring.
> + * @ctx:             monitoring context
> + * @sample_int:              time interval between samplings
> + * @aggr_int:                time interval between aggregations
> + * @min_nr_reg:              minimal number of regions
> + *
> + * This function should not be called while the kdamond is running.
> + * Every time interval is in micro-seconds.
> + *
> + * Return: 0 on success, negative error code otherwise.
> + */
> +int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
> +             unsigned long aggr_int, unsigned long min_nr_reg)
> +{
> +     if (min_nr_reg < 3) {
> +             pr_err("min_nr_regions (%lu) must be at least 3\n",
> +                             min_nr_reg);
> +             return -EINVAL;
> +     }
> +
> +     ctx->sample_interval = sample_int;
> +     ctx->aggr_interval = aggr_int;
> +     ctx->min_nr_regions = min_nr_reg;
> +
> +     return 0;
> +}
> +
>  /*
>   * Functions for the module loading/unloading
>   */
> 




Amazon Development Center Germany GmbH
Krausenstr. 38
10117 Berlin
Geschaeftsfuehrung: Christian Schlaeger, Jonathan Weiss
Eingetragen am Amtsgericht Charlottenburg unter HRB 149173 B
Sitz: Berlin
Ust-ID: DE 289 237 879


Reply via email to