From: Sam Tebbs <[email protected]>

Import the latest version of Cortex Strings' strcmp function.

The upstream source is src/aarch64/strcmp.S as of commit 90b61261ceb4
in https://git.linaro.org/toolchain/cortex-strings.git.

Signed-off-by: Sam Tebbs <[email protected]>
[ rm: update attribution, expand commit message ]
Signed-off-by: Robin Murphy <[email protected]>
Signed-off-by: Oliver Swede <[email protected]>
---
 arch/arm64/lib/strcmp.S | 272 +++++++++++++++++-----------------------
 1 file changed, 113 insertions(+), 159 deletions(-)

diff --git a/arch/arm64/lib/strcmp.S b/arch/arm64/lib/strcmp.S
index 4e79566726c8..e00ff46c4ffc 100644
--- a/arch/arm64/lib/strcmp.S
+++ b/arch/arm64/lib/strcmp.S
@@ -1,13 +1,11 @@
 /* SPDX-License-Identifier: GPL-2.0-only */
 /*
- * Copyright (C) 2013 ARM Ltd.
- * Copyright (C) 2013 Linaro.
+ * Copyright (c) 2012,2018 Linaro Limited. All rights reserved.
  *
- * This code is based on glibc cortex strings work originally authored by 
Linaro
- * be found @
+ * This code is based on glibc Cortex Strings work originally authored by
+ * Linaro, found at:
  *
- * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
- * files/head:/src/aarch64/
+ * https://git.linaro.org/toolchain/cortex-strings.git
  */
 
 #include <linux/linkage.h>
@@ -25,60 +23,106 @@
  * or be greater than s2.
  */
 
+#define L(label) .L ## label
+
 #define REP8_01 0x0101010101010101
 #define REP8_7f 0x7f7f7f7f7f7f7f7f
 #define REP8_80 0x8080808080808080
 
 /* Parameters and result.  */
-src1           .req    x0
-src2           .req    x1
-result         .req    x0
+#define src1           x0
+#define src2           x1
+#define result         x0
 
 /* Internal variables.  */
-data1          .req    x2
-data1w         .req    w2
-data2          .req    x3
-data2w         .req    w3
-has_nul                .req    x4
-diff           .req    x5
-syndrome       .req    x6
-tmp1           .req    x7
-tmp2           .req    x8
-tmp3           .req    x9
-zeroones       .req    x10
-pos            .req    x11
-
+#define data1          x2
+#define data1w         w2
+#define data2          x3
+#define data2w         w3
+#define has_nul                x4
+#define diff           x5
+#define syndrome       x6
+#define tmp1           x7
+#define tmp2           x8
+#define tmp3           x9
+#define zeroones       x10
+#define pos            x11
+
+       /* Start of performance-critical section  -- one 64B cache line.  */
 SYM_FUNC_START_WEAK_PI(strcmp)
        eor     tmp1, src1, src2
        mov     zeroones, #REP8_01
        tst     tmp1, #7
-       b.ne    .Lmisaligned8
+       b.ne    L(misaligned8)
        ands    tmp1, src1, #7
-       b.ne    .Lmutual_align
-
-       /*
-       * NUL detection works on the principle that (X - 1) & (~X) & 0x80
-       * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
-       * can be done in parallel across the entire word.
-       */
-.Lloop_aligned:
+       b.ne    L(mutual_align)
+       /* NUL detection works on the principle that (X - 1) & (~X) & 0x80
+          (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
+          can be done in parallel across the entire word.  */
+L(loop_aligned):
        ldr     data1, [src1], #8
        ldr     data2, [src2], #8
-.Lstart_realigned:
+L(start_realigned):
        sub     tmp1, data1, zeroones
        orr     tmp2, data1, #REP8_7f
        eor     diff, data1, data2      /* Non-zero if differences found.  */
        bic     has_nul, tmp1, tmp2     /* Non-zero if NUL terminator.  */
        orr     syndrome, diff, has_nul
-       cbz     syndrome, .Lloop_aligned
-       b       .Lcal_cmpresult
-
-.Lmutual_align:
-       /*
-       * Sources are mutually aligned, but are not currently at an
-       * alignment boundary.  Round down the addresses and then mask off
-       * the bytes that preceed the start point.
-       */
+       cbz     syndrome, L(loop_aligned)
+       /* End of performance-critical section  -- one 64B cache line.  */
+
+L(end):
+CPU_LE(rev     syndrome, syndrome)
+CPU_LE(rev     data1, data1)
+       /* The MS-non-zero bit of the syndrome marks either the first bit
+          that is different, or the top bit of the first zero byte.
+          Shifting left now will bring the critical information into the
+          top bits.  */
+CPU_LE(clz     pos, syndrome)
+CPU_LE(rev     data2, data2)
+CPU_LE(lsl     data1, data1, pos)
+CPU_LE(lsl     data2, data2, pos)
+       /* But we need to zero-extend (char is unsigned) the value and then
+          perform a signed 32-bit subtraction.  */
+CPU_LE(lsr     data1, data1, #56)
+CPU_LE(sub     result, data1, data2, lsr #56)
+CPU_LE(ret)
+       /* For big-endian we cannot use the trick with the syndrome value
+          as carry-propagation can corrupt the upper bits if the trailing
+          bytes in the string contain 0x01.  */
+       /* However, if there is no NUL byte in the dword, we can generate
+          the result directly.  We can't just subtract the bytes as the
+          MSB might be significant.  */
+CPU_BE(cbnz    has_nul, 1f)
+CPU_BE(cmp     data1, data2)
+CPU_BE(cset    result, ne)
+CPU_BE(cneg    result, result, lo)
+CPU_BE(ret)
+1:
+       /* Re-compute the NUL-byte detection, using a byte-reversed value.  */
+CPU_BE(rev     tmp3, data1)
+CPU_BE(sub     tmp1, tmp3, zeroones)
+CPU_BE(orr     tmp2, tmp3, #REP8_7f)
+CPU_BE(bic     has_nul, tmp1, tmp2)
+CPU_BE(rev     has_nul, has_nul)
+CPU_BE(orr     syndrome, diff, has_nul)
+CPU_BE(clz     pos, syndrome)
+       /* The MS-non-zero bit of the syndrome marks either the first bit
+          that is different, or the top bit of the first zero byte.
+          Shifting left now will bring the critical information into the
+          top bits.  */
+CPU_BE(lsl     data1, data1, pos)
+CPU_BE(lsl     data2, data2, pos)
+       /* But we need to zero-extend (char is unsigned) the value and then
+          perform a signed 32-bit subtraction.  */
+CPU_BE(lsr     data1, data1, #56)
+CPU_BE(sub     result, data1, data2, lsr #56)
+CPU_BE(ret)
+
+L(mutual_align):
+       /* Sources are mutually aligned, but are not currently at an
+          alignment boundary.  Round down the addresses and then mask off
+          the bytes that preceed the start point.  */
        bic     src1, src1, #7
        bic     src2, src2, #7
        lsl     tmp1, tmp1, #3          /* Bytes beyond alignment -> bits.  */
@@ -87,137 +131,47 @@ SYM_FUNC_START_WEAK_PI(strcmp)
        ldr     data2, [src2], #8
        mov     tmp2, #~0
        /* Big-endian.  Early bytes are at MSB.  */
-CPU_BE( lsl    tmp2, tmp2, tmp1 )      /* Shift (tmp1 & 63).  */
+CPU_BE(lsl     tmp2, tmp2, tmp1)    /* Shift (tmp1 & 63).  */
        /* Little-endian.  Early bytes are at LSB.  */
-CPU_LE( lsr    tmp2, tmp2, tmp1 )      /* Shift (tmp1 & 63).  */
-
+CPU_LE(lsr     tmp2, tmp2, tmp1)       /* Shift (tmp1 & 63).  */
        orr     data1, data1, tmp2
        orr     data2, data2, tmp2
-       b       .Lstart_realigned
-
-.Lmisaligned8:
-       /*
-       * Get the align offset length to compare per byte first.
-       * After this process, one string's address will be aligned.
-       */
-       and     tmp1, src1, #7
-       neg     tmp1, tmp1
-       add     tmp1, tmp1, #8
-       and     tmp2, src2, #7
-       neg     tmp2, tmp2
-       add     tmp2, tmp2, #8
-       subs    tmp3, tmp1, tmp2
-       csel    pos, tmp1, tmp2, hi /*Choose the maximum. */
-.Ltinycmp:
+       b       L(start_realigned)
+
+L(misaligned8):
+       /* Align SRC1 to 8 bytes and then compare 8 bytes at a time, always
+          checking to make sure that we don't access beyond page boundary in
+          SRC2.  */
+       tst     src1, #7
+       b.eq    L(loop_misaligned)
+L(do_misaligned):
        ldrb    data1w, [src1], #1
        ldrb    data2w, [src2], #1
-       subs    pos, pos, #1
-       ccmp    data1w, #1, #0, ne  /* NZCV = 0b0000.  */
-       ccmp    data1w, data2w, #0, cs  /* NZCV = 0b0000.  */
-       b.eq    .Ltinycmp
-       cbnz    pos, 1f /*find the null or unequal...*/
        cmp     data1w, #1
-       ccmp    data1w, data2w, #0, cs
-       b.eq    .Lstart_align /*the last bytes are equal....*/
-1:
-       sub     result, data1, data2
-       ret
-
-.Lstart_align:
-       ands    xzr, src1, #7
-       b.eq    .Lrecal_offset
-       /*process more leading bytes to make str1 aligned...*/
-       add     src1, src1, tmp3
-       add     src2, src2, tmp3
-       /*load 8 bytes from aligned str1 and non-aligned str2..*/
+       ccmp    data1w, data2w, #0, cs  /* NZCV = 0b0000.  */
+       b.ne    L(done)
+       tst     src1, #7
+       b.ne    L(do_misaligned)
+
+L(loop_misaligned):
+       /* Test if we are within the last dword of the end of a 4K page.  If
+          yes then jump back to the misaligned loop to copy a byte at a time.  
*/
+       and     tmp1, src2, #0xff8
+       eor     tmp1, tmp1, #0xff8
+       cbz     tmp1, L(do_misaligned)
        ldr     data1, [src1], #8
        ldr     data2, [src2], #8
 
        sub     tmp1, data1, zeroones
        orr     tmp2, data1, #REP8_7f
-       bic     has_nul, tmp1, tmp2
-       eor     diff, data1, data2 /* Non-zero if differences found.  */
-       orr     syndrome, diff, has_nul
-       cbnz    syndrome, .Lcal_cmpresult
-       /*How far is the current str2 from the alignment boundary...*/
-       and     tmp3, tmp3, #7
-.Lrecal_offset:
-       neg     pos, tmp3
-.Lloopcmp_proc:
-       /*
-       * Divide the eight bytes into two parts. First,backwards the src2
-       * to an alignment boundary,load eight bytes from the SRC2 alignment
-       * boundary,then compare with the relative bytes from SRC1.
-       * If all 8 bytes are equal,then start the second part's comparison.
-       * Otherwise finish the comparison.
-       * This special handle can garantee all the accesses are in the
-       * thread/task space in avoid to overrange access.
-       */
-       ldr     data1, [src1,pos]
-       ldr     data2, [src2,pos]
-       sub     tmp1, data1, zeroones
-       orr     tmp2, data1, #REP8_7f
-       bic     has_nul, tmp1, tmp2
-       eor     diff, data1, data2  /* Non-zero if differences found.  */
-       orr     syndrome, diff, has_nul
-       cbnz    syndrome, .Lcal_cmpresult
-
-       /*The second part process*/
-       ldr     data1, [src1], #8
-       ldr     data2, [src2], #8
-       sub     tmp1, data1, zeroones
-       orr     tmp2, data1, #REP8_7f
-       bic     has_nul, tmp1, tmp2
-       eor     diff, data1, data2  /* Non-zero if differences found.  */
+       eor     diff, data1, data2      /* Non-zero if differences found.  */
+       bic     has_nul, tmp1, tmp2     /* Non-zero if NUL terminator.  */
        orr     syndrome, diff, has_nul
-       cbz     syndrome, .Lloopcmp_proc
+       cbz     syndrome, L(loop_misaligned)
+       b       L(end)
 
-.Lcal_cmpresult:
-       /*
-       * reversed the byte-order as big-endian,then CLZ can find the most
-       * significant zero bits.
-       */
-CPU_LE( rev    syndrome, syndrome )
-CPU_LE( rev    data1, data1 )
-CPU_LE( rev    data2, data2 )
-
-       /*
-       * For big-endian we cannot use the trick with the syndrome value
-       * as carry-propagation can corrupt the upper bits if the trailing
-       * bytes in the string contain 0x01.
-       * However, if there is no NUL byte in the dword, we can generate
-       * the result directly.  We cannot just subtract the bytes as the
-       * MSB might be significant.
-       */
-CPU_BE( cbnz   has_nul, 1f )
-CPU_BE( cmp    data1, data2 )
-CPU_BE( cset   result, ne )
-CPU_BE( cneg   result, result, lo )
-CPU_BE( ret )
-CPU_BE( 1: )
-       /*Re-compute the NUL-byte detection, using a byte-reversed value. */
-CPU_BE(        rev     tmp3, data1 )
-CPU_BE(        sub     tmp1, tmp3, zeroones )
-CPU_BE(        orr     tmp2, tmp3, #REP8_7f )
-CPU_BE(        bic     has_nul, tmp1, tmp2 )
-CPU_BE(        rev     has_nul, has_nul )
-CPU_BE(        orr     syndrome, diff, has_nul )
-
-       clz     pos, syndrome
-       /*
-       * The MS-non-zero bit of the syndrome marks either the first bit
-       * that is different, or the top bit of the first zero byte.
-       * Shifting left now will bring the critical information into the
-       * top bits.
-       */
-       lsl     data1, data1, pos
-       lsl     data2, data2, pos
-       /*
-       * But we need to zero-extend (char is unsigned) the value and then
-       * perform a signed 32-bit subtraction.
-       */
-       lsr     data1, data1, #56
-       sub     result, data1, data2, lsr #56
+L(done):
+       sub     result, data1, data2
        ret
 SYM_FUNC_END_PI(strcmp)
 EXPORT_SYMBOL_NOKASAN(strcmp)
-- 
2.17.1

Reply via email to