Hi,

Looks good to me.
Do the maintainers or someone else have any major issues?
Could Miquel indicate if a version 16 must be send for that 'ret'
variable alone or is it OK now?


On 11/30/20 11:00 AM, Yifeng Zhao wrote:
> This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308,
> RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using
> 8-bit NAND interface on the ARM based RK3308 platform.
> 
> Support Rockchip SoCs and NFC versions:
> - PX30 and RK3326(NFCv900).
>       ECC: 16/40/60/70 bits/1KB.
>       CLOCK: ahb and nfc.
> - RK3308 and RV1108(NFCv800).
>       ECC: 16 bits/1KB.
>       CLOCK: ahb and nfc.
> - RK3036 and RK3128(NFCv622).
>       ECC: 16/24/40/60 bits/1KB.
>       CLOCK: ahb and nfc.
> - RK3066, RK3188 and RK2928(NFCv600).
>       ECC: 16/24/40/60 bits/1KB.
>       CLOCK: ahb.
> 
> Supported features:
> - Read full page data by DMA.
> - Support HW ECC(one step is 1KB).
> - Support 2 - 32K page size.
> - Support 8 CS(depend on SoCs)
> 
> Limitations:
> - No support for the ecc step size is 512.
> - Untested on some SoCs.
> - No support for subpages.
> - No support for the builtin randomizer.
> - The original bad block mask is not supported. It is recommended to use
>   the BBT(bad block table).
> 
> Suggested-by: Johan Jonker <jbx6...@gmail.com>
> Signed-off-by: Yifeng Zhao <yifeng.z...@rock-chips.com>
> ---
> 
> Changes in v15:
> - Use a buffer pointer nfc->page_buf instead of the original two pointers.
> - Fix coding style.
> - Fix some comments.
> 
> Changes in v14:
> - Add oob_read and oob_write hook api.
> - Support timing config and ecc config for each chips.
> - Fix some comments.
> 
> Changes in v13:
> - The nfc->buffer will realloc while the page size of the second mtd
>   is large than the first one.
> - Fix coding style.
> - Fix some comments.
> 
> Changes in v12: None
> Changes in v11:
> - Fix compile error.
> 
> Changes in v10:
> - Fix compile error on master v5.9-rc7.
> 
> Changes in v9:
> - The nfc->buffer will realloc while the page size of the second mtd
>   is large than the first one
> - Fix coding style.
> - Remove struct rk_nfc_clk.
> - Prepend some function with rk_nfc_.
> - Replace function readl_poll_timeout_atomic with readl_relaxed_poll_timeout.
> - Remove function rk_nfc_read_byte and rk_nfc_write_byte.
> - Don't select the die if 'check_only == true' in function rk_nfc_exec_op.
> - Modify function rk_nfc_write_page and rk_nfc_write_page_raw.
> 
> Changes in v8: None
> Changes in v7:
> - Rebase to linux-next.
> - Fix coding style.
> - Reserved 4 bytes at the beginning of the oob area.
> - Page raw read and write included ecc data.
> 
> Changes in v6:
> - The mtd->name set by NAND label property.
> - Add some comments.
> - Fix compile error.
> 
> Changes in v5:
> - Add boot blocks support  with different ECC for bootROM.
> - Rename rockchip-nand.c to rockchip-nand-controller.c.
> - Unification of other variable names.
> - Remove some compatible define.
> 
> Changes in v4:
> - Define platform data structure for the register offsets.
> - The compatible define with rkxx_nfc.
> - Use SET_SYSTEM_SLEEP_PM_OPS to define PM_OPS.
> - Use exec_op instead of legacy hooks.
> 
> Changes in v3: None
> Changes in v2:
> - Fix compile error.
> - Include header files sorted by file name.
> 
>  drivers/mtd/nand/raw/Kconfig                  |   12 +
>  drivers/mtd/nand/raw/Makefile                 |    1 +
>  .../mtd/nand/raw/rockchip-nand-controller.c   | 1500 +++++++++++++++++
>  3 files changed, 1513 insertions(+)
>  create mode 100644 drivers/mtd/nand/raw/rockchip-nand-controller.c
> 
> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
> index 6c46f25b57e2..2cc533e4e239 100644
> --- a/drivers/mtd/nand/raw/Kconfig
> +++ b/drivers/mtd/nand/raw/Kconfig
> @@ -462,6 +462,18 @@ config MTD_NAND_ARASAN
>         Enables the driver for the Arasan NAND flash controller on
>         Zynq Ultrascale+ MPSoC.
>  
> +config MTD_NAND_ROCKCHIP
> +     tristate "Rockchip NAND controller"
> +     depends on ARCH_ROCKCHIP && HAS_IOMEM
> +     help
> +       Enables support for NAND controller on Rockchip SoCs.
> +       There are four different versions of NAND FLASH Controllers,
> +       including:
> +         NFC v600: RK2928, RK3066, RK3188
> +         NFC v622: RK3036, RK3128
> +         NFC v800: RK3308, RV1108
> +         NFC v900: PX30, RK3326
> +
>  comment "Misc"
>  
>  config MTD_SM_COMMON
> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
> index 2930f5b9015d..960c9be25204 100644
> --- a/drivers/mtd/nand/raw/Makefile
> +++ b/drivers/mtd/nand/raw/Makefile
> @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_STM32_FMC2)   += stm32_fmc2_nand.o
>  obj-$(CONFIG_MTD_NAND_MESON)         += meson_nand.o
>  obj-$(CONFIG_MTD_NAND_CADENCE)               += cadence-nand-controller.o
>  obj-$(CONFIG_MTD_NAND_ARASAN)                += arasan-nand-controller.o
> +obj-$(CONFIG_MTD_NAND_ROCKCHIP)              += rockchip-nand-controller.o
>  
>  nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
>  nand-objs += nand_onfi.o
> diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c 
> b/drivers/mtd/nand/raw/rockchip-nand-controller.c
> new file mode 100644
> index 000000000000..bb4778c52514
> --- /dev/null
> +++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c
> @@ -0,0 +1,1500 @@
> +// SPDX-License-Identifier: GPL-2.0 OR MIT
> +/*
> + * Rockchip NAND Flash controller driver.
> + * Copyright (C) 2020 Rockchip Inc.
> + * Author: Yifeng Zhao <yifeng.z...@rock-chips.com>
> + */
> +
> +#include <linux/clk.h>
> +#include <linux/delay.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/dmaengine.h>
> +#include <linux/interrupt.h>
> +#include <linux/iopoll.h>
> +#include <linux/module.h>
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/rawnand.h>
> +#include <linux/of.h>
> +#include <linux/of_device.h>
> +#include <linux/platform_device.h>
> +#include <linux/slab.h>
> +
> +/*
> + * NFC Page Data Layout:
> + *   1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
> + *   1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
> + *   ......
> + * NAND Page Data Layout:
> + *   1024 * n data + m Bytes oob
> + * Original Bad Block Mask Location:
> + *   First byte of oob(spare).
> + * nand_chip->oob_poi data layout:
> + *   4Bytes sys data + .... + 4Bytes sys data + ECC data.
> + */
> +
> +/* NAND controller register definition */
> +#define NFC_READ                     (0)
> +#define NFC_WRITE                    (1)
> +
> +#define NFC_FMCTL                    (0x00)
> +#define   FMCTL_CE_SEL_M             0xFF
> +#define   FMCTL_CE_SEL(x)            (1 << (x))
> +#define   FMCTL_WP                   BIT(8)
> +#define   FMCTL_RDY                  BIT(9)
> +
> +#define NFC_FMWAIT                   (0x04)
> +#define   FLCTL_RST                  BIT(0)
> +#define   FLCTL_WR                   (1)     /* 0: read, 1: write */
> +#define   FLCTL_XFER_ST                      BIT(2)
> +#define   FLCTL_XFER_EN                      BIT(3)
> +#define   FLCTL_ACORRECT             BIT(10) /* Auto correct error bits. */
> +#define   FLCTL_XFER_READY           BIT(20)
> +#define   FLCTL_XFER_SECTOR          (22)
> +#define   FLCTL_TOG_FIX                      BIT(29)
> +
> +#define   BCHCTL_BANK_M                      (7 << 5)
> +#define   BCHCTL_BANK                        (5)
> +
> +#define   DMA_ST                     BIT(0)
> +#define   DMA_WR                     (1)     /* 0: write, 1: read */
> +#define   DMA_EN                     BIT(2)
> +#define   DMA_AHB_SIZE                       (3)     /* 0: 1, 1: 2, 2: 4 */
> +#define   DMA_BURST_SIZE             (6)     /* 0: 1, 3: 4, 5: 8, 7: 16 */
> +#define   DMA_INC_NUM                        (9)     /* 1 - 16 */
> +
> +#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
> +       (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
> +#define   INT_DMA                    BIT(0)
> +#define NFC_BANK                     (0x800)
> +#define NFC_BANK_STEP                        (0x100)
> +#define   BANK_DATA                  (0x00)
> +#define   BANK_ADDR                  (0x04)
> +#define   BANK_CMD                   (0x08)
> +#define NFC_SRAM0                    (0x1000)
> +#define NFC_SRAM1                    (0x1400)
> +#define NFC_SRAM_SIZE                        (0x400)
> +#define NFC_TIMEOUT                  (500000)
> +#define NFC_MAX_OOB_PER_STEP         128
> +#define NFC_MIN_OOB_PER_STEP         64
> +#define MAX_DATA_SIZE                        0xFFFC
> +#define MAX_ADDRESS_CYC                      6
> +#define NFC_ECC_MAX_MODES            4
> +#define NFC_MAX_NSELS                        (8) /* Some Socs only have 1 or 
> 2 CSs. */
> +#define NFC_SYS_DATA_SIZE            (4) /* 4 bytes sys data in oob pre 1024 
> data.*/
> +#define RK_DEFAULT_CLOCK_RATE                (150 * 1000 * 1000) /* 150 Mhz 
> */
> +#define ACCTIMING(csrw, rwpw, rwcs)  ((csrw) << 12 | (rwpw) << 5 | (rwcs))
> +
> +enum nfc_type {
> +     NFC_V6,
> +     NFC_V8,
> +     NFC_V9,
> +};
> +
> +/**
> + * struct rk_ecc_cnt_status: represent a ecc status data.
> + * @err_flag_bit: error flag bit index at register.
> + * @low: ECC count low bit index at register.
> + * @low_mask: mask bit.
> + * @low_bn: ECC count low bit number.
> + * @high: ECC count high bit index at register.
> + * @high_mask: mask bit
> + */
> +struct ecc_cnt_status {
> +     u8 err_flag_bit;
> +     u8 low;
> +     u8 low_mask;
> +     u8 low_bn;
> +     u8 high;
> +     u8 high_mask;
> +};
> +
> +/**
> + * @type: NFC version
> + * @ecc_strengths: ECC strengths
> + * @ecc_cfgs: ECC config values
> + * @flctl_off: FLCTL register offset
> + * @bchctl_off: BCHCTL register offset
> + * @dma_data_buf_off: DMA_DATA_BUF register offset
> + * @dma_oob_buf_off: DMA_OOB_BUF register offset
> + * @dma_cfg_off: DMA_CFG register offset
> + * @dma_st_off: DMA_ST register offset
> + * @bch_st_off: BCG_ST register offset
> + * @randmz_off: RANDMZ register offset
> + * @int_en_off: interrupt enable register offset
> + * @int_clr_off: interrupt clean register offset
> + * @int_st_off: interrupt status register offset
> + * @oob0_off: oob0 register offset
> + * @oob1_off: oob1 register offset
> + * @ecc0: represent ECC0 status data
> + * @ecc1: represent ECC1 status data
> + */
> +struct nfc_cfg {
> +     enum nfc_type type;
> +     u8 ecc_strengths[NFC_ECC_MAX_MODES];
> +     u32 ecc_cfgs[NFC_ECC_MAX_MODES];
> +     u32 flctl_off;
> +     u32 bchctl_off;
> +     u32 dma_cfg_off;
> +     u32 dma_data_buf_off;
> +     u32 dma_oob_buf_off;
> +     u32 dma_st_off;
> +     u32 bch_st_off;
> +     u32 randmz_off;
> +     u32 int_en_off;
> +     u32 int_clr_off;
> +     u32 int_st_off;
> +     u32 oob0_off;
> +     u32 oob1_off;
> +     struct ecc_cnt_status ecc0;
> +     struct ecc_cnt_status ecc1;
> +};
> +
> +struct rk_nfc_nand_chip {
> +     struct list_head node;
> +     struct nand_chip chip;
> +
> +     u16 boot_blks;
> +     u16 metadata_size;
> +     u32 boot_ecc;
> +     u32 timing;
> +
> +     u8 nsels;
> +     u8 sels[0];
> +     /* Nothing after this field. */
> +};
> +
> +struct rk_nfc {
> +     struct nand_controller controller;
> +     const struct nfc_cfg *cfg;
> +     struct device *dev;
> +
> +     struct clk *nfc_clk;
> +     struct clk *ahb_clk;
> +     void __iomem *regs;
> +
> +     u32 selected_bank;
> +     u32 band_offset;
> +     u32 cur_ecc;
> +     u32 cur_timing;
> +
> +     struct completion done;
> +     struct list_head chips;
> +
> +     u8 *page_buf;
> +     u32 *oob_buf;
> +     u32 page_buf_size;
> +     u32 oob_buf_size;
> +
> +     unsigned long assigned_cs;
> +};
> +
> +static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip 
> *chip)
> +{
> +     return container_of(chip, struct rk_nfc_nand_chip, chip);
> +}
> +
> +static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 
> *p, int i)
> +{
> +     return (u8 *)p + i * chip->ecc.size;
> +}
> +
> +static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
> +{
> +     u8 *poi;
> +
> +     poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
> +
> +     return poi;
> +}
> +
> +static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
> +{
> +     struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> +     u8 *poi;
> +
> +     poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
> +
> +     return poi;
> +}
> +
> +static inline int rk_nfc_data_len(struct nand_chip *chip)
> +{
> +     return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
> +}
> +
> +static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
> +{
> +     struct rk_nfc *nfc = nand_get_controller_data(chip);
> +
> +     return nfc->page_buf + i * rk_nfc_data_len(chip);
> +}
> +
> +static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
> +{
> +     struct rk_nfc *nfc = nand_get_controller_data(chip);
> +
> +     return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
> +}
> +
> +static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
> +{
> +     struct rk_nfc *nfc = nand_get_controller_data(chip);
> +     u32 reg, i;
> +
> +     for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
> +             if (strength == nfc->cfg->ecc_strengths[i]) {
> +                     reg = nfc->cfg->ecc_cfgs[i];
> +                     break;
> +             }
> +     }
> +
> +     if (i >= NFC_ECC_MAX_MODES)
> +             return -EINVAL;
> +
> +     writel(reg, nfc->regs + nfc->cfg->bchctl_off);
> +
> +     /* Save chip ECC setting */
> +     nfc->cur_ecc = strength;
> +
> +     return 0;
> +}
> +
> +static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
> +{
> +     struct rk_nfc *nfc = nand_get_controller_data(chip);
> +     struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> +     struct nand_ecc_ctrl *ecc = &chip->ecc;
> +     u32 val;
> +
> +     if (cs < 0) {
> +             nfc->selected_bank = -1;
> +             /* Deselect the currently selected target. */
> +             val = readl_relaxed(nfc->regs + NFC_FMCTL);
> +             val &= ~FMCTL_CE_SEL_M;
> +             writel(val, nfc->regs + NFC_FMCTL);
> +             return;
> +     }
> +
> +     nfc->selected_bank = rknand->sels[cs];
> +     nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
> +
> +     val = readl_relaxed(nfc->regs + NFC_FMCTL);
> +     val &= ~FMCTL_CE_SEL_M;
> +     val |= FMCTL_CE_SEL(nfc->selected_bank);
> +
> +     writel(val, nfc->regs + NFC_FMCTL);
> +
> +     /*
> +      * Compare current chip timing with selected chip timing and
> +      * change if needed.
> +      */
> +     if (nfc->cur_timing != rknand->timing) {
> +             writel(rknand->timing, nfc->regs + NFC_FMWAIT);
> +             nfc->cur_timing = rknand->timing;
> +     }
> +
> +     /*
> +      * Compare current chip ECC setting with selected chip ECC setting and
> +      * change if needed.
> +      */
> +     if (nfc->cur_ecc != ecc->strength)
> +             rk_nfc_hw_ecc_setup(chip, ecc->strength);
> +}
> +
> +static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
> +{
> +     int rc;
> +     u32 val;
> +
> +     rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
> +                                     val & FMCTL_RDY, 10, NFC_TIMEOUT);
> +
> +     return rc;
> +}
> +
> +static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
> +{
> +     int i;
> +
> +     for (i = 0; i < len; i++)
> +             buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
> +                                    BANK_DATA);
> +}
> +
> +static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
> +{
> +     int i;
> +
> +     for (i = 0; i < len; i++)
> +             writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
> +}
> +
> +static int rk_nfc_cmd(struct nand_chip *chip,
> +                   const struct nand_subop *subop)
> +{
> +     struct rk_nfc *nfc = nand_get_controller_data(chip);
> +     unsigned int i, j, remaining, start;
> +     int reg_offset = nfc->band_offset;
> +     u8 *inbuf = NULL;
> +     const u8 *outbuf;
> +     u32 cnt = 0;
> +     int ret = 0;
> +
> +     for (i = 0; i < subop->ninstrs; i++) {
> +             const struct nand_op_instr *instr = &subop->instrs[i];
> +
> +             switch (instr->type) {
> +             case NAND_OP_CMD_INSTR:
> +                     writeb(instr->ctx.cmd.opcode,
> +                            nfc->regs + reg_offset + BANK_CMD);
> +                     break;
> +
> +             case NAND_OP_ADDR_INSTR:
> +                     remaining = nand_subop_get_num_addr_cyc(subop, i);
> +                     start = nand_subop_get_addr_start_off(subop, i);
> +
> +                     for (j = 0; j < 8 && j + start < remaining; j++)
> +                             writeb(instr->ctx.addr.addrs[j + start],
> +                                    nfc->regs + reg_offset + BANK_ADDR);
> +                     break;
> +
> +             case NAND_OP_DATA_IN_INSTR:
> +             case NAND_OP_DATA_OUT_INSTR:
> +                     start = nand_subop_get_data_start_off(subop, i);
> +                     cnt = nand_subop_get_data_len(subop, i);
> +
> +                     if (instr->type == NAND_OP_DATA_OUT_INSTR) {
> +                             outbuf = instr->ctx.data.buf.out + start;
> +                             rk_nfc_write_buf(nfc, outbuf, cnt);
> +                     } else {
> +                             inbuf = instr->ctx.data.buf.in + start;
> +                             rk_nfc_read_buf(nfc, inbuf, cnt);
> +                     }
> +                     break;
> +
> +             case NAND_OP_WAITRDY_INSTR:
> +                     if (rk_nfc_wait_ioready(nfc) < 0) {
> +                             ret = -ETIMEDOUT;
> +                             dev_err(nfc->dev, "IO not ready\n");
> +                     }
> +                     break;
> +             }
> +     }
> +
> +     return ret;
> +}
> +
> +static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
> +     NAND_OP_PARSER_PATTERN(
> +             rk_nfc_cmd,
> +             NAND_OP_PARSER_PAT_CMD_ELEM(true),
> +             NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
> +             NAND_OP_PARSER_PAT_CMD_ELEM(true),
> +             NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
> +             NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
> +     NAND_OP_PARSER_PATTERN(
> +             rk_nfc_cmd,
> +             NAND_OP_PARSER_PAT_CMD_ELEM(true),
> +             NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
> +             NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
> +             NAND_OP_PARSER_PAT_CMD_ELEM(true),
> +             NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
> +);
> +
> +static int rk_nfc_exec_op(struct nand_chip *chip,
> +                       const struct nand_operation *op,
> +                       bool check_only)
> +{
> +     if (!check_only)
> +             rk_nfc_select_chip(chip, op->cs);
> +
> +     return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
> +                                   check_only);
> +}
> +
> +static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
> +                               const struct nand_interface_config *conf)
> +{
> +     struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> +     struct rk_nfc *nfc = nand_get_controller_data(chip);
> +     const struct nand_sdr_timings *timings;
> +     u32 rate, tc2rw, trwpw, trw2c;
> +     u32 temp;
> +
> +     if (target < 0)
> +             return 0;
> +
> +     timings = nand_get_sdr_timings(conf);
> +     if (IS_ERR(timings))
> +             return -EOPNOTSUPP;
> +
> +     if (IS_ERR(nfc->nfc_clk))
> +             rate = clk_get_rate(nfc->ahb_clk);
> +     else
> +             rate = clk_get_rate(nfc->nfc_clk);
> +
> +     /* Turn clock rate into kHz. */
> +     rate /= 1000;
> +
> +     tc2rw = 1;
> +     trw2c = 1;
> +
> +     trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
> +     trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
> +
> +     temp = timings->tREA_max / 1000;
> +     temp = DIV_ROUND_UP(temp * rate, 1000000);
> +
> +     if (trwpw < temp)
> +             trwpw = temp;
> +
> +     /*
> +      * ACCON: access timing control register
> +      * -------------------------------------
> +      * 31:18: reserved
> +      * 17:12: csrw, clock cycles from the falling edge of CSn to the
> +      *   falling edge of RDn or WRn
> +      * 11:11: reserved
> +      * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
> +      * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
> +      *   rising edge of CSn
> +      */
> +
> +     /* Save chip timing */
> +     rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
> +
> +     return 0;
> +}
> +
> +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
> +                           dma_addr_t dma_data, dma_addr_t dma_oob)
> +{
> +     u32 dma_reg, fl_reg, bch_reg;
> +
> +     dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
> +           (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
> +
> +     fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
> +              (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
> +
> +     if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
> +             bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
> +             bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
> +                       (nfc->selected_bank << BCHCTL_BANK);
> +             writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
> +     }
> +
> +     writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
> +     writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
> +     writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
> +     writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
> +     fl_reg |= FLCTL_XFER_ST;
> +     writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
> +}
> +
> +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
> +{
> +     void __iomem *ptr;

> +     int ret = 0;

remove ret

> +     u32 reg;
> +
> +     ptr = nfc->regs + nfc->cfg->flctl_off;
> +

> +     ret = readl_relaxed_poll_timeout(ptr, reg,
> +                                      reg & FLCTL_XFER_READY,
> +                                      10, NFC_TIMEOUT);
> +
> +     return ret;

        return readl_relaxed_poll_timeout(..);

> +}
> +
> +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
> +                              int oob_on, int page)
> +{
> +     struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> +     struct rk_nfc *nfc = nand_get_controller_data(chip);
> +     struct mtd_info *mtd = nand_to_mtd(chip);
> +     struct nand_ecc_ctrl *ecc = &chip->ecc;

> +     int i, pages_per_blk, ret = 0;

remove ret

> +
> +     pages_per_blk = mtd->erasesize / mtd->writesize;
> +     if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
> +         (page < (pages_per_blk * rknand->boot_blks)) &&
> +         rknand->boot_ecc != ecc->strength) {
> +             /*
> +              * There's currently no method to notify the MTD framework that
> +              * a different ECC strength is in use for the boot blocks.
> +              */
> +             return -EIO;
> +     }
> +
> +     if (!buf)
> +             memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
> +
> +     for (i = 0; i < ecc->steps; i++) {
> +             /* Copy data to the NFC buffer. */
> +             if (buf)
> +                     memcpy(rk_nfc_data_ptr(chip, i),
> +                            rk_nfc_buf_to_data_ptr(chip, buf, i),
> +                            ecc->size);
> +             /*
> +              * The first four bytes of OOB are reserved for the
> +              * boot ROM. In some debugging cases, such as with a
> +              * read, erase and write back test these 4 bytes stored
> +              * in OOB also need to be written back.
> +              *
> +              * The function nand_block_bad detects bad blocks like:
> +              *
> +              * bad = chip->oob_poi[chip->badblockpos];
> +              *
> +              * chip->badblockpos == 0 for a large page NAND Flash,
> +              * so chip->oob_poi[0] is the bad block mask (BBM).
> +              *
> +              * The OOB data layout on the NFC is:
> +              *
> +              *    PA0  PA1  PA2  PA3  | BBM OOB1 OOB2 OOB3 | ...
> +              *
> +              * or
> +              *
> +              *    0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
> +              *
> +              * The code here just swaps the first 4 bytes with the last
> +              * 4 bytes without losing any data.
> +              *
> +              * The chip->oob_poi data layout:
> +              *
> +              *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
> +              *
> +              * The rk_nfc_ooblayout_free() function already has reserved
> +              * these 4 bytes with:
> +              *
> +              * oob_region->offset = NFC_SYS_DATA_SIZE + 2;
> +              */
> +             if (!i)
> +                     memcpy(rk_nfc_oob_ptr(chip, i),
> +                            rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
> +                            NFC_SYS_DATA_SIZE);
> +             else
> +                     memcpy(rk_nfc_oob_ptr(chip, i),
> +                            rk_nfc_buf_to_oob_ptr(chip, i - 1),
> +                            NFC_SYS_DATA_SIZE);
> +             /* Copy ECC data to the NFC buffer. */
> +             memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
> +                    rk_nfc_buf_to_oob_ecc_ptr(chip, i),
> +                    ecc->bytes);
> +     }
> +
> +     nand_prog_page_begin_op(chip, page, 0, NULL, 0);
> +     rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);

> +     ret = nand_prog_page_end_op(chip);
> +
> +     return ret;

        return nand_prog_page_end_op(chip);

remove ret

> +}
> +
> +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
> +                                int oob_on, int page)
> +{
> +     struct mtd_info *mtd = nand_to_mtd(chip);
> +     struct rk_nfc *nfc = nand_get_controller_data(chip);
> +     struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> +     struct nand_ecc_ctrl *ecc = &chip->ecc;
> +     int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
> +                     NFC_MIN_OOB_PER_STEP;
> +     int pages_per_blk = mtd->erasesize / mtd->writesize;
> +     int ret = 0, i, boot_rom_mode = 0;
> +     dma_addr_t dma_data, dma_oob;
> +     u32 reg;
> +     u8 *oob;
> +
> +     nand_prog_page_begin_op(chip, page, 0, NULL, 0);
> +
> +     if (buf)
> +             memcpy(nfc->page_buf, buf, mtd->writesize);
> +     else
> +             memset(nfc->page_buf, 0xFF, mtd->writesize);
> +
> +     /*
> +      * The first blocks (4, 8 or 16 depending on the device) are used
> +      * by the boot ROM and the first 32 bits of OOB need to link to
> +      * the next page address in the same block. We can't directly copy
> +      * OOB data from the MTD framework, because this page address
> +      * conflicts for example with the bad block marker (BBM),
> +      * so we shift all OOB data including the BBM with 4 byte positions.
> +      * As a consequence the OOB size available to the MTD framework is
> +      * also reduced with 4 bytes.
> +      *
> +      *    PA0  PA1  PA2  PA3 | BBM OOB1 OOB2 OOB3 | ...
> +      *
> +      * If a NAND is not a boot medium or the page is not a boot block,
> +      * the first 4 bytes are left untouched by writing 0xFF to them.
> +      *
> +      *   0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
> +      *
> +      * Configure the ECC algorithm supported by the boot ROM.
> +      */
> +     if ((page < (pages_per_blk * rknand->boot_blks)) &&
> +         (chip->options & NAND_IS_BOOT_MEDIUM)) {
> +             boot_rom_mode = 1;
> +             if (rknand->boot_ecc != ecc->strength)
> +                     rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
> +     }
> +
> +     for (i = 0; i < ecc->steps; i++) {
> +             if (!i) {
> +                     reg = 0xFFFFFFFF;
> +             } else {
> +                     oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
> +                     reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
> +                           oob[3] << 24;
> +             }
> +
> +             if (!i && boot_rom_mode)
> +                     reg = (page & (pages_per_blk - 1)) * 4;
> +
> +             if (nfc->cfg->type == NFC_V9)
> +                     nfc->oob_buf[i] = reg;
> +             else
> +                     nfc->oob_buf[i * (oob_step / 4)] = reg;
> +     }
> +
> +     dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
> +                               mtd->writesize, DMA_TO_DEVICE);
> +     dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
> +                              ecc->steps * oob_step,
> +                              DMA_TO_DEVICE);
> +
> +     reinit_completion(&nfc->done);
> +     writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
> +
> +     rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
> +                       dma_oob);
> +     ret = wait_for_completion_timeout(&nfc->done,
> +                                       msecs_to_jiffies(100));
> +     if (!ret)
> +             dev_warn(nfc->dev, "write: wait dma done timeout.\n");
> +     /*
> +      * Whether the DMA transfer is completed or not. The driver
> +      * needs to check the NFC`s status register to see if the data
> +      * transfer was completed.
> +      */
> +     ret = rk_nfc_wait_for_xfer_done(nfc);
> +
> +     dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
> +                      DMA_TO_DEVICE);
> +     dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
> +                      DMA_TO_DEVICE);
> +
> +     if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
> +             rk_nfc_hw_ecc_setup(chip, ecc->strength);
> +
> +     if (ret) {
> +             dev_err(nfc->dev, "write: wait transfer done timeout.\n");
> +             return -ETIMEDOUT;
> +     }
> +
> +     return nand_prog_page_end_op(chip);
> +}
> +
> +static int rk_nfc_write_oob(struct nand_chip *chip, int page)
> +{
> +     return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
> +}
> +
> +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
> +                             int page)
> +{
> +     struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> +     struct rk_nfc *nfc = nand_get_controller_data(chip);
> +     struct mtd_info *mtd = nand_to_mtd(chip);
> +     struct nand_ecc_ctrl *ecc = &chip->ecc;
> +     int i, pages_per_blk;
> +
> +     pages_per_blk = mtd->erasesize / mtd->writesize;
> +     if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
> +         (page < (pages_per_blk * rknand->boot_blks)) &&
> +         rknand->boot_ecc != ecc->strength) {
> +             /*
> +              * There's currently no method to notify the MTD framework that
> +              * a different ECC strength is in use for the boot blocks.
> +              */
> +             return -EIO;
> +     }
> +
> +     nand_read_page_op(chip, page, 0, NULL, 0);
> +     rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
> +     for (i = 0; i < ecc->steps; i++) {
> +             /*
> +              * The first four bytes of OOB are reserved for the
> +              * boot ROM. In some debugging cases, such as with a read,
> +              * erase and write back test, these 4 bytes also must be
> +              * saved somewhere, otherwise this information will be
> +              * lost during a write back.
> +              */
> +             if (!i)
> +                     memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
> +                            rk_nfc_oob_ptr(chip, i),
> +                            NFC_SYS_DATA_SIZE);
> +             else
> +                     memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
> +                            rk_nfc_oob_ptr(chip, i),
> +                            NFC_SYS_DATA_SIZE);
> +
> +             /* Copy ECC data from the NFC buffer. */
> +             memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
> +                    rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
> +                    ecc->bytes);
> +
> +             /* Copy data from the NFC buffer. */
> +             if (buf)
> +                     memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
> +                            rk_nfc_data_ptr(chip, i),
> +                            ecc->size);
> +     }
> +
> +     return 0;
> +}
> +
> +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int 
> oob_on,
> +                               int page)
> +{
> +     struct mtd_info *mtd = nand_to_mtd(chip);
> +     struct rk_nfc *nfc = nand_get_controller_data(chip);
> +     struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> +     struct nand_ecc_ctrl *ecc = &chip->ecc;
> +     int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
> +                     NFC_MIN_OOB_PER_STEP;
> +     int pages_per_blk = mtd->erasesize / mtd->writesize;
> +     dma_addr_t dma_data, dma_oob;
> +     int ret = 0, i, cnt, boot_rom_mode = 0;
> +     int max_bitflips = 0, bch_st, ecc_fail = 0;
> +     u8 *oob;
> +     u32 tmp;
> +
> +     nand_read_page_op(chip, page, 0, NULL, 0);
> +
> +     dma_data = dma_map_single(nfc->dev, nfc->page_buf,
> +                               mtd->writesize,
> +                               DMA_FROM_DEVICE);
> +     dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
> +                              ecc->steps * oob_step,
> +                              DMA_FROM_DEVICE);
> +
> +     /*
> +      * The first blocks (4, 8 or 16 depending on the device)
> +      * are used by the boot ROM.
> +      * Configure the ECC algorithm supported by the boot ROM.
> +      */
> +     if ((page < (pages_per_blk * rknand->boot_blks)) &&
> +         (chip->options & NAND_IS_BOOT_MEDIUM)) {
> +             boot_rom_mode = 1;
> +             if (rknand->boot_ecc != ecc->strength)
> +                     rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
> +     }
> +
> +     reinit_completion(&nfc->done);
> +     writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
> +     rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
> +                       dma_oob);
> +     ret = wait_for_completion_timeout(&nfc->done,
> +                                       msecs_to_jiffies(100));
> +     if (!ret)
> +             dev_warn(nfc->dev, "read: wait dma done timeout.\n");
> +     /*
> +      * Whether the DMA transfer is completed or not. The driver
> +      * needs to check the NFC`s status register to see if the data
> +      * transfer was completed.
> +      */
> +     ret = rk_nfc_wait_for_xfer_done(nfc);
> +
> +     dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
> +                      DMA_FROM_DEVICE);
> +     dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
> +                      DMA_FROM_DEVICE);
> +
> +     if (ret) {
> +             ret = -ETIMEDOUT;
> +             dev_err(nfc->dev, "read: wait transfer done timeout.\n");
> +             goto timeout_err;
> +     }
> +
> +     for (i = 1; i < ecc->steps; i++) {
> +             oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
> +             if (nfc->cfg->type == NFC_V9)
> +                     tmp = nfc->oob_buf[i];
> +             else
> +                     tmp = nfc->oob_buf[i * (oob_step / 4)];
> +             *oob++ = (u8)tmp;
> +             *oob++ = (u8)(tmp >> 8);
> +             *oob++ = (u8)(tmp >> 16);
> +             *oob++ = (u8)(tmp >> 24);
> +     }
> +
> +     for (i = 0; i < (ecc->steps / 2); i++) {
> +             bch_st = readl_relaxed(nfc->regs +
> +                                    nfc->cfg->bch_st_off + i * 4);
> +             if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
> +                 bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
> +                     mtd->ecc_stats.failed++;
> +                     ecc_fail = 1;
> +             } else {
> +                     cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
> +                     mtd->ecc_stats.corrected += cnt;
> +                     max_bitflips = max_t(u32, max_bitflips, cnt);
> +
> +                     cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
> +                     mtd->ecc_stats.corrected += cnt;
> +                     max_bitflips = max_t(u32, max_bitflips, cnt);
> +             }
> +     }
> +
> +     if (buf)
> +             memcpy(buf, nfc->page_buf, mtd->writesize);
> +
> +timeout_err:
> +     if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
> +             rk_nfc_hw_ecc_setup(chip, ecc->strength);
> +
> +     if (ret)
> +             return ret;
> +
> +     if (ecc_fail) {
> +             dev_err(nfc->dev, "read page: %x ecc error!\n", page);
> +             return 0;
> +     }
> +
> +     return max_bitflips;
> +}
> +
> +static int rk_nfc_read_oob(struct nand_chip *chip, int page)
> +{
> +     return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
> +}
> +
> +static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
> +{
> +     /* Disable flash wp. */
> +     writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
> +     /* Config default timing 40ns at 150 Mhz NFC clock. */
> +     writel(0x1081, nfc->regs + NFC_FMWAIT);
> +     nfc->cur_timing = 0x1081;
> +     /* Disable randomizer and DMA. */
> +     writel(0, nfc->regs + nfc->cfg->randmz_off);
> +     writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
> +     writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
> +}
> +
> +static irqreturn_t rk_nfc_irq(int irq, void *id)
> +{
> +     struct rk_nfc *nfc = id;
> +     u32 sta, ien;
> +
> +     sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
> +     ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
> +
> +     if (!(sta & ien))
> +             return IRQ_NONE;
> +
> +     writel(sta, nfc->regs + nfc->cfg->int_clr_off);
> +     writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
> +
> +     complete(&nfc->done);
> +
> +     return IRQ_HANDLED;
> +}
> +
> +static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
> +{
> +     int ret;
> +
> +     if (!IS_ERR(nfc->nfc_clk)) {
> +             ret = clk_prepare_enable(nfc->nfc_clk);
> +             if (ret) {
> +                     dev_err(dev, "failed to enable NFC clk\n");
> +                     return ret;
> +             }
> +     }
> +
> +     ret = clk_prepare_enable(nfc->ahb_clk);
> +     if (ret) {
> +             dev_err(dev, "failed to enable ahb clk\n");
> +             if (!IS_ERR(nfc->nfc_clk))
> +                     clk_disable_unprepare(nfc->nfc_clk);
> +             return ret;
> +     }
> +
> +     return 0;
> +}
> +
> +static void rk_nfc_disable_clks(struct rk_nfc *nfc)
> +{
> +     if (!IS_ERR(nfc->nfc_clk))
> +             clk_disable_unprepare(nfc->nfc_clk);
> +     clk_disable_unprepare(nfc->ahb_clk);
> +}
> +
> +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
> +                              struct mtd_oob_region *oob_region)
> +{
> +     struct nand_chip *chip = mtd_to_nand(mtd);
> +     struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> +
> +     if (section)
> +             return -ERANGE;
> +
> +     /*
> +      * The beginning of the OOB area stores the reserved data for the NFC,
> +      * the size of the reserved data is NFC_SYS_DATA_SIZE bytes.
> +      */
> +     oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
> +     oob_region->offset = NFC_SYS_DATA_SIZE + 2;
> +
> +     return 0;
> +}
> +
> +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
> +                             struct mtd_oob_region *oob_region)
> +{
> +     struct nand_chip *chip = mtd_to_nand(mtd);
> +     struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> +
> +     if (section)
> +             return -ERANGE;
> +
> +     oob_region->length = mtd->oobsize - rknand->metadata_size;
> +     oob_region->offset = rknand->metadata_size;
> +
> +     return 0;
> +}
> +
> +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
> +     .free = rk_nfc_ooblayout_free,
> +     .ecc = rk_nfc_ooblayout_ecc,
> +};
> +
> +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
> +{
> +     struct nand_chip *chip = mtd_to_nand(mtd);
> +     struct rk_nfc *nfc = nand_get_controller_data(chip);
> +     struct nand_ecc_ctrl *ecc = &chip->ecc;
> +     const u8 *strengths = nfc->cfg->ecc_strengths;
> +     u8 max_strength, nfc_max_strength;
> +     int i;
> +
> +     nfc_max_strength = nfc->cfg->ecc_strengths[0];
> +     /* If optional dt settings not present. */
> +     if (!ecc->size || !ecc->strength ||
> +         ecc->strength > nfc_max_strength) {
> +             chip->ecc.size = 1024;
> +             ecc->steps = mtd->writesize / ecc->size;
> +
> +             /*
> +              * HW ECC always requests the number of ECC bytes per 1024 byte
> +              * blocks. The first 4 OOB bytes are reserved for sys data.
> +              */
> +             max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
> +                              fls(8 * 1024);
> +             if (max_strength > nfc_max_strength)
> +                     max_strength = nfc_max_strength;
> +
> +             for (i = 0; i < 4; i++) {
> +                     if (max_strength >= strengths[i])
> +                             break;
> +             }
> +
> +             if (i >= 4) {
> +                     dev_err(nfc->dev, "unsupported ECC strength\n");
> +                     return -EOPNOTSUPP;
> +             }
> +
> +             ecc->strength = strengths[i];
> +     }
> +     ecc->steps = mtd->writesize / ecc->size;
> +     ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
> +
> +     return 0;
> +}
> +
> +static int rk_nfc_attach_chip(struct nand_chip *chip)
> +{
> +     struct mtd_info *mtd = nand_to_mtd(chip);
> +     struct device *dev = mtd->dev.parent;
> +     struct rk_nfc *nfc = nand_get_controller_data(chip);
> +     struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
> +     struct nand_ecc_ctrl *ecc = &chip->ecc;
> +     int new_page_len, new_oob_len;
> +     void *buf;
> +     int ret;
> +
> +     if (chip->options & NAND_BUSWIDTH_16) {
> +             dev_err(dev, "16 bits bus width not supported");
> +             return -EINVAL;
> +     }
> +
> +     if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
> +             return 0;
> +
> +     ret = rk_nfc_ecc_init(dev, mtd);
> +     if (ret)
> +             return ret;
> +
> +     rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
> +
> +     if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
> +             dev_err(dev,
> +                     "driver needs at least %d bytes of meta data\n",
> +                     NFC_SYS_DATA_SIZE + 2);
> +             return -EIO;
> +     }
> +
> +     /* Check buffer first, avoid duplicate alloc buffer. */
> +     new_page_len = mtd->writesize + mtd->oobsize;
> +     if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
> +             buf = krealloc(nfc->page_buf, new_page_len,
> +                            GFP_KERNEL | GFP_DMA);
> +             if (!buf)
> +                     return -ENOMEM;
> +             nfc->page_buf = buf;
> +             nfc->page_buf_size = new_page_len;
> +     }
> +
> +     new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
> +     if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
> +             buf = krealloc(nfc->oob_buf, new_oob_len,
> +                            GFP_KERNEL | GFP_DMA);
> +             if (!buf) {
> +                     kfree(nfc->page_buf);
> +                     nfc->page_buf = NULL;
> +                     return -ENOMEM;
> +             }
> +             nfc->oob_buf = buf;
> +             nfc->oob_buf_size = new_oob_len;
> +     }
> +
> +     if (!nfc->page_buf) {
> +             nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
> +             if (!nfc->page_buf)
> +                     return -ENOMEM;
> +             nfc->page_buf_size = new_page_len;
> +     }
> +
> +     if (!nfc->oob_buf) {
> +             nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
> +             if (!nfc->oob_buf) {
> +                     kfree(nfc->page_buf);
> +                     nfc->page_buf = NULL;
> +                     return -ENOMEM;
> +             }
> +             nfc->oob_buf_size = new_oob_len;
> +     }
> +
> +     chip->ecc.write_page_raw = rk_nfc_write_page_raw;
> +     chip->ecc.write_page = rk_nfc_write_page_hwecc;
> +     chip->ecc.write_oob = rk_nfc_write_oob;
> +
> +     chip->ecc.read_page_raw = rk_nfc_read_page_raw;
> +     chip->ecc.read_page = rk_nfc_read_page_hwecc;
> +     chip->ecc.read_oob = rk_nfc_read_oob;
> +
> +     return 0;
> +}
> +
> +static const struct nand_controller_ops rk_nfc_controller_ops = {
> +     .attach_chip = rk_nfc_attach_chip,
> +     .exec_op = rk_nfc_exec_op,
> +     .setup_interface = rk_nfc_setup_interface,
> +};
> +
> +static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
> +                              struct device_node *np)
> +{
> +     struct rk_nfc_nand_chip *rknand;
> +     struct nand_chip *chip;
> +     struct mtd_info *mtd;
> +     int nsels;
> +     u32 tmp;
> +     int ret;
> +     int i;
> +
> +     if (!of_get_property(np, "reg", &nsels))
> +             return -ENODEV;
> +     nsels /= sizeof(u32);
> +     if (!nsels || nsels > NFC_MAX_NSELS) {
> +             dev_err(dev, "invalid reg property size %d\n", nsels);
> +             return -EINVAL;
> +     }
> +
> +     rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8),
> +                           GFP_KERNEL);
> +     if (!rknand)
> +             return -ENOMEM;
> +
> +     rknand->nsels = nsels;
> +     for (i = 0; i < nsels; i++) {
> +             ret = of_property_read_u32_index(np, "reg", i, &tmp);
> +             if (ret) {
> +                     dev_err(dev, "reg property failure : %d\n", ret);
> +                     return ret;
> +             }
> +
> +             if (tmp >= NFC_MAX_NSELS) {
> +                     dev_err(dev, "invalid CS: %u\n", tmp);
> +                     return -EINVAL;
> +             }
> +
> +             if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
> +                     dev_err(dev, "CS %u already assigned\n", tmp);
> +                     return -EINVAL;
> +             }
> +
> +             rknand->sels[i] = tmp;
> +     }
> +
> +     chip = &rknand->chip;
> +     chip->controller = &nfc->controller;
> +
> +     nand_set_flash_node(chip, np);
> +
> +     nand_set_controller_data(chip, nfc);
> +
> +     chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
> +     chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
> +
> +     /* Set default mode in case dt entry is missing. */
> +     chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
> +
> +     mtd = nand_to_mtd(chip);
> +     mtd->owner = THIS_MODULE;
> +     mtd->dev.parent = dev;
> +
> +     if (!mtd->name) {
> +             dev_err(nfc->dev, "NAND label property is mandatory\n");
> +             return -EINVAL;
> +     }
> +
> +     mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
> +     rk_nfc_hw_init(nfc);
> +     ret = nand_scan(chip, nsels);
> +     if (ret)
> +             return ret;
> +
> +     if (chip->options & NAND_IS_BOOT_MEDIUM) {
> +             ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
> +             rknand->boot_blks = ret ? 0 : tmp;
> +
> +             ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
> +                                        &tmp);
> +             rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
> +     }
> +
> +     ret = mtd_device_register(mtd, NULL, 0);
> +     if (ret) {
> +             dev_err(dev, "MTD parse partition error\n");
> +             nand_cleanup(chip);
> +             return ret;
> +     }
> +
> +     list_add_tail(&rknand->node, &nfc->chips);
> +
> +     return 0;
> +}
> +
> +static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
> +{
> +     struct rk_nfc_nand_chip *rknand, *tmp;
> +     struct nand_chip *chip;
> +     int ret;
> +
> +     list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
> +             chip = &rknand->chip;
> +             ret = mtd_device_unregister(nand_to_mtd(chip));
> +             WARN_ON(ret);
> +             nand_cleanup(chip);
> +             list_del(&rknand->node);
> +     }
> +}
> +
> +static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
> +{
> +     struct device_node *np = dev->of_node, *nand_np;
> +     int nchips = of_get_child_count(np);
> +     int ret;
> +
> +     if (!nchips || nchips > NFC_MAX_NSELS) {
> +             dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
> +                     nchips);
> +             return -EINVAL;
> +     }
> +
> +     for_each_child_of_node(np, nand_np) {
> +             ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
> +             if (ret) {
> +                     of_node_put(nand_np);
> +                     rk_nfc_chips_cleanup(nfc);
> +                     return ret;
> +             }
> +     }
> +
> +     return 0;
> +}
> +
> +static struct nfc_cfg nfc_v6_cfg = {
> +             .type                   = NFC_V6,
> +             .ecc_strengths          = {60, 40, 24, 16},
> +             .ecc_cfgs               = {
> +                     0x00040011, 0x00040001, 0x00000011, 0x00000001,
> +             },
> +             .flctl_off              = 0x08,
> +             .bchctl_off             = 0x0C,
> +             .dma_cfg_off            = 0x10,
> +             .dma_data_buf_off       = 0x14,
> +             .dma_oob_buf_off        = 0x18,
> +             .dma_st_off             = 0x1C,
> +             .bch_st_off             = 0x20,
> +             .randmz_off             = 0x150,
> +             .int_en_off             = 0x16C,
> +             .int_clr_off            = 0x170,
> +             .int_st_off             = 0x174,
> +             .oob0_off               = 0x200,
> +             .oob1_off               = 0x230,
> +             .ecc0                   = {
> +                     .err_flag_bit   = 2,
> +                     .low            = 3,
> +                     .low_mask       = 0x1F,
> +                     .low_bn         = 5,
> +                     .high           = 27,
> +                     .high_mask      = 0x1,
> +             },
> +             .ecc1                   = {
> +                     .err_flag_bit   = 15,
> +                     .low            = 16,
> +                     .low_mask       = 0x1F,
> +                     .low_bn         = 5,
> +                     .high           = 29,
> +                     .high_mask      = 0x1,
> +             },
> +};
> +
> +static struct nfc_cfg nfc_v8_cfg = {
> +             .type                   = NFC_V8,
> +             .ecc_strengths          = {16, 16, 16, 16},
> +             .ecc_cfgs               = {
> +                     0x00000001, 0x00000001, 0x00000001, 0x00000001,
> +             },
> +             .flctl_off              = 0x08,
> +             .bchctl_off             = 0x0C,
> +             .dma_cfg_off            = 0x10,
> +             .dma_data_buf_off       = 0x14,
> +             .dma_oob_buf_off        = 0x18,
> +             .dma_st_off             = 0x1C,
> +             .bch_st_off             = 0x20,
> +             .randmz_off             = 0x150,
> +             .int_en_off             = 0x16C,
> +             .int_clr_off            = 0x170,
> +             .int_st_off             = 0x174,
> +             .oob0_off               = 0x200,
> +             .oob1_off               = 0x230,
> +             .ecc0                   = {
> +                     .err_flag_bit   = 2,
> +                     .low            = 3,
> +                     .low_mask       = 0x1F,
> +                     .low_bn         = 5,
> +                     .high           = 27,
> +                     .high_mask      = 0x1,
> +             },
> +             .ecc1                   = {
> +                     .err_flag_bit   = 15,
> +                     .low            = 16,
> +                     .low_mask       = 0x1F,
> +                     .low_bn         = 5,
> +                     .high           = 29,
> +                     .high_mask      = 0x1,
> +             },
> +};
> +
> +static struct nfc_cfg nfc_v9_cfg = {
> +             .type                   = NFC_V9,
> +             .ecc_strengths          = {70, 60, 40, 16},
> +             .ecc_cfgs               = {
> +                     0x00000001, 0x06000001, 0x04000001, 0x02000001,
> +             },
> +             .flctl_off              = 0x10,
> +             .bchctl_off             = 0x20,
> +             .dma_cfg_off            = 0x30,
> +             .dma_data_buf_off       = 0x34,
> +             .dma_oob_buf_off        = 0x38,
> +             .dma_st_off             = 0x3C,
> +             .bch_st_off             = 0x150,
> +             .randmz_off             = 0x208,
> +             .int_en_off             = 0x120,
> +             .int_clr_off            = 0x124,
> +             .int_st_off             = 0x128,
> +             .oob0_off               = 0x200,
> +             .oob1_off               = 0x204,
> +             .ecc0                   = {
> +                     .err_flag_bit   = 2,
> +                     .low            = 3,
> +                     .low_mask       = 0x7F,
> +                     .low_bn         = 7,
> +                     .high           = 0,
> +                     .high_mask      = 0x0,
> +             },
> +             .ecc1                   = {
> +                     .err_flag_bit   = 18,
> +                     .low            = 19,
> +                     .low_mask       = 0x7F,
> +                     .low_bn         = 7,
> +                     .high           = 0,
> +                     .high_mask      = 0x0,
> +             },
> +};
> +
> +static const struct of_device_id rk_nfc_id_table[] = {
> +     {
> +             .compatible = "rockchip,px30-nfc",
> +             .data = &nfc_v9_cfg
> +     },
> +     {
> +             .compatible = "rockchip,rk2928-nfc",
> +             .data = &nfc_v6_cfg
> +     },
> +     {
> +             .compatible = "rockchip,rv1108-nfc",
> +             .data = &nfc_v8_cfg
> +     },
> +     { /* sentinel */ }
> +};
> +MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
> +
> +static int rk_nfc_probe(struct platform_device *pdev)
> +{
> +     struct device *dev = &pdev->dev;
> +     struct rk_nfc *nfc;
> +     int ret, irq;
> +
> +     nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
> +     if (!nfc)
> +             return -ENOMEM;
> +
> +     nand_controller_init(&nfc->controller);
> +     INIT_LIST_HEAD(&nfc->chips);
> +     nfc->controller.ops = &rk_nfc_controller_ops;
> +
> +     nfc->cfg = of_device_get_match_data(dev);
> +     nfc->dev = dev;
> +
> +     init_completion(&nfc->done);
> +
> +     nfc->regs = devm_platform_ioremap_resource(pdev, 0);
> +     if (IS_ERR(nfc->regs)) {
> +             ret = PTR_ERR(nfc->regs);
> +             goto release_nfc;
> +     }
> +
> +     nfc->nfc_clk = devm_clk_get(dev, "nfc");
> +     if (IS_ERR(nfc->nfc_clk)) {
> +             dev_dbg(dev, "no NFC clk\n");
> +             /* Some earlier models, such as rk3066, have no NFC clk. */
> +     }
> +
> +     nfc->ahb_clk = devm_clk_get(dev, "ahb");
> +     if (IS_ERR(nfc->ahb_clk)) {
> +             dev_err(dev, "no ahb clk\n");
> +             ret = PTR_ERR(nfc->ahb_clk);
> +             goto release_nfc;
> +     }
> +
> +     ret = rk_nfc_enable_clks(dev, nfc);
> +     if (ret)
> +             goto release_nfc;
> +
> +     irq = platform_get_irq(pdev, 0);
> +     if (irq < 0) {
> +             dev_err(dev, "no NFC irq resource\n");
> +             ret = -EINVAL;
> +             goto clk_disable;
> +     }
> +
> +     writel(0, nfc->regs + nfc->cfg->int_en_off);
> +     ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
> +     if (ret) {
> +             dev_err(dev, "failed to request NFC irq\n");
> +             goto clk_disable;
> +     }
> +
> +     platform_set_drvdata(pdev, nfc);
> +
> +     ret = rk_nfc_nand_chips_init(dev, nfc);
> +     if (ret) {
> +             dev_err(dev, "failed to init NAND chips\n");
> +             goto clk_disable;
> +     }
> +     return 0;
> +
> +clk_disable:
> +     rk_nfc_disable_clks(nfc);
> +release_nfc:
> +     return ret;
> +}
> +
> +static int rk_nfc_remove(struct platform_device *pdev)
> +{
> +     struct rk_nfc *nfc = platform_get_drvdata(pdev);
> +
> +     kfree(nfc->page_buf);
> +     kfree(nfc->oob_buf);
> +     rk_nfc_chips_cleanup(nfc);
> +     rk_nfc_disable_clks(nfc);
> +
> +     return 0;
> +}
> +
> +static int __maybe_unused rk_nfc_suspend(struct device *dev)
> +{
> +     struct rk_nfc *nfc = dev_get_drvdata(dev);
> +
> +     rk_nfc_disable_clks(nfc);
> +
> +     return 0;
> +}
> +
> +static int __maybe_unused rk_nfc_resume(struct device *dev)
> +{
> +     struct rk_nfc *nfc = dev_get_drvdata(dev);
> +     struct rk_nfc_nand_chip *rknand;
> +     struct nand_chip *chip;
> +     int ret;
> +     u32 i;
> +
> +     ret = rk_nfc_enable_clks(dev, nfc);
> +     if (ret)
> +             return ret;
> +
> +     /* Reset NAND chip if VCC was powered off. */
> +     list_for_each_entry(rknand, &nfc->chips, node) {
> +             chip = &rknand->chip;
> +             for (i = 0; i < rknand->nsels; i++)
> +                     nand_reset(chip, i);
> +     }
> +
> +     return 0;
> +}
> +
> +static const struct dev_pm_ops rk_nfc_pm_ops = {
> +     SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
> +};
> +
> +static struct platform_driver rk_nfc_driver = {
> +     .probe = rk_nfc_probe,
> +     .remove = rk_nfc_remove,
> +     .driver = {
> +             .name = "rockchip-nfc",
> +             .of_match_table = rk_nfc_id_table,
> +             .pm = &rk_nfc_pm_ops,
> +     },
> +};
> +
> +module_platform_driver(rk_nfc_driver);
> +
> +MODULE_LICENSE("Dual MIT/GPL");
> +MODULE_AUTHOR("Yifeng Zhao <yifeng.z...@rock-chips.com>");
> +MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
> +MODULE_ALIAS("platform:rockchip-nand-controller");
> 

Reply via email to