Instead of just bulk-flushing skbuff_heads queued up through napi_consume_skb() or __kfree_skb_defer(), try to reuse them on allocation path. If the cache is empty on allocation, bulk-allocate the first 16 elements, which is more efficient than per-skb allocation. If the cache is full on freeing, bulk-wipe the second half of the cache (32 elements). This also includes custom KASAN poisoning/unpoisoning to be double sure there are no use-after-free cases.
To not change current behaviour, introduce a new function, napi_build_skb(), to optionally use a new approach later in drivers. Note on selected bulk size, 16: - this equals to XDP_BULK_QUEUE_SIZE, DEV_MAP_BULK_SIZE and especially VETH_XDP_BATCH, which is also used to bulk-allocate skbuff_heads and was tested on powerful setups; - this also showed the best performance in the actual test series (from the array of {8, 16, 32}). Suggested-by: Edward Cree <ecree.xil...@gmail.com> # Divide on two halves Suggested-by: Eric Dumazet <eduma...@google.com> # KASAN poisoning Cc: Dmitry Vyukov <dvyu...@google.com> # Help with KASAN Cc: Paolo Abeni <pab...@redhat.com> # Reduced batch size Signed-off-by: Alexander Lobakin <aloba...@pm.me> --- include/linux/skbuff.h | 2 + net/core/skbuff.c | 94 ++++++++++++++++++++++++++++++++++++------ 2 files changed, 83 insertions(+), 13 deletions(-) diff --git a/include/linux/skbuff.h b/include/linux/skbuff.h index 0e0707296098..906122eac82a 100644 --- a/include/linux/skbuff.h +++ b/include/linux/skbuff.h @@ -1087,6 +1087,8 @@ struct sk_buff *build_skb(void *data, unsigned int frag_size); struct sk_buff *build_skb_around(struct sk_buff *skb, void *data, unsigned int frag_size); +struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); + /** * alloc_skb - allocate a network buffer * @size: size to allocate diff --git a/net/core/skbuff.c b/net/core/skbuff.c index 860a9d4f752f..9e1a8ded4acc 100644 --- a/net/core/skbuff.c +++ b/net/core/skbuff.c @@ -120,6 +120,8 @@ static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) } #define NAPI_SKB_CACHE_SIZE 64 +#define NAPI_SKB_CACHE_BULK 16 +#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) struct napi_alloc_cache { struct page_frag_cache page; @@ -164,6 +166,25 @@ void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) } EXPORT_SYMBOL(__netdev_alloc_frag_align); +static struct sk_buff *napi_skb_cache_get(void) +{ + struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); + struct sk_buff *skb; + + if (unlikely(!nc->skb_count)) + nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, + GFP_ATOMIC, + NAPI_SKB_CACHE_BULK, + nc->skb_cache); + if (unlikely(!nc->skb_count)) + return NULL; + + skb = nc->skb_cache[--nc->skb_count]; + kasan_unpoison_object_data(skbuff_head_cache, skb); + + return skb; +} + /* Caller must provide SKB that is memset cleared */ static void __build_skb_around(struct sk_buff *skb, void *data, unsigned int frag_size) @@ -265,6 +286,53 @@ struct sk_buff *build_skb_around(struct sk_buff *skb, } EXPORT_SYMBOL(build_skb_around); +/** + * __napi_build_skb - build a network buffer + * @data: data buffer provided by caller + * @frag_size: size of data, or 0 if head was kmalloced + * + * Version of __build_skb() that uses NAPI percpu caches to obtain + * skbuff_head instead of inplace allocation. + * + * Returns a new &sk_buff on success, %NULL on allocation failure. + */ +static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) +{ + struct sk_buff *skb; + + skb = napi_skb_cache_get(); + if (unlikely(!skb)) + return NULL; + + memset(skb, 0, offsetof(struct sk_buff, tail)); + __build_skb_around(skb, data, frag_size); + + return skb; +} + +/** + * napi_build_skb - build a network buffer + * @data: data buffer provided by caller + * @frag_size: size of data, or 0 if head was kmalloced + * + * Version of __napi_build_skb() that takes care of skb->head_frag + * and skb->pfmemalloc when the data is a page or page fragment. + * + * Returns a new &sk_buff on success, %NULL on allocation failure. + */ +struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) +{ + struct sk_buff *skb = __napi_build_skb(data, frag_size); + + if (likely(skb) && frag_size) { + skb->head_frag = 1; + skb_propagate_pfmemalloc(virt_to_head_page(data), skb); + } + + return skb; +} +EXPORT_SYMBOL(napi_build_skb); + /* * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells * the caller if emergency pfmemalloc reserves are being used. If it is and @@ -838,31 +906,31 @@ void __consume_stateless_skb(struct sk_buff *skb) kfree_skbmem(skb); } -static inline void _kfree_skb_defer(struct sk_buff *skb) +static void napi_skb_cache_put(struct sk_buff *skb) { struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); + u32 i; /* drop skb->head and call any destructors for packet */ skb_release_all(skb); - /* record skb to CPU local list */ + kasan_poison_object_data(skbuff_head_cache, skb); nc->skb_cache[nc->skb_count++] = skb; -#ifdef CONFIG_SLUB - /* SLUB writes into objects when freeing */ - prefetchw(skb); -#endif - - /* flush skb_cache if it is filled */ if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { - kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, - nc->skb_cache); - nc->skb_count = 0; + for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) + kasan_unpoison_object_data(skbuff_head_cache, + nc->skb_cache[i]); + + kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF, + nc->skb_cache + NAPI_SKB_CACHE_HALF); + nc->skb_count = NAPI_SKB_CACHE_HALF; } } + void __kfree_skb_defer(struct sk_buff *skb) { - _kfree_skb_defer(skb); + napi_skb_cache_put(skb); } void napi_consume_skb(struct sk_buff *skb, int budget) @@ -887,7 +955,7 @@ void napi_consume_skb(struct sk_buff *skb, int budget) return; } - _kfree_skb_defer(skb); + napi_skb_cache_put(skb); } EXPORT_SYMBOL(napi_consume_skb); -- 2.30.1