Wecan save some lines of code by getting rid of
*lg= cpu... lines of code spread everywhere by now.

he new macro lg_data(cpu) is used anywhere we'd otherwise use the
cpu->lg->lguest_dataconstruction, to prevent lines getting to big.

Signed-off-by:Glauber de Oliveira Costa <[EMAIL PROTECTED]>
---
drivers/lguest/core.c                 |   24 +++----
drivers/lguest/hypercalls.c           |   49 +++++++--------
drivers/lguest/interrupts_and_traps.c |   54 ++++++++--------
drivers/lguest/lg.h                   |   30 +++++----
drivers/lguest/page_tables.c          |  114 ++++++++++++++++----------------
drivers/lguest/segments.c             |    8 +--
drivers/lguest/x86/core.c             |   30 ++++-----
7 files changed, 149 insertions(+), 160 deletions(-)

diff--git a/drivers/lguest/core.c b/drivers/lguest/core.c
index4c26ba7..bb42fd0 100644
---a/drivers/lguest/core.c
+++b/drivers/lguest/core.c
@@-151,23 +151,23 @@ int lguest_address_ok(const struct lguest *lg,
/* This routine copies memory from the Guest.  Here we can see how useful the
 * kill_lguest() routine we met in the Launcher can be: we return a random
 * value (all zeroes) instead of needing to return an error. */
-void__lgread(struct lguest *lg, void *b, unsigned long addr, unsigned bytes)
+void__lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
{
-       if(!lguest_address_ok(lg, addr, bytes)
-          || copy_from_user(b, lg->mem_base + addr, bytes) != 0) {
+       if(!lguest_address_ok(cpu->lg, addr, bytes)
+          || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
                /* copy_from_user should do this, but as we rely on it... */
                memset(b, 0, bytes);
-               kill_guest(lg,"bad read address %#lx len %u", addr, bytes);
+               kill_guest(cpu,"bad read address %#lx len %u", addr, bytes);
        }
}

/* This is the write (copy into guest) version. */
-void__lgwrite(struct lguest *lg, unsigned long addr, const void *b,
+void__lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
               unsigned bytes)
{
-       if(!lguest_address_ok(lg, addr, bytes)
-          || copy_to_user(lg->mem_base + addr, b, bytes) != 0)
-               kill_guest(lg,"bad write address %#lx len %u", addr, bytes);
+       if(!lguest_address_ok(cpu->lg, addr, bytes)
+          || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
+               kill_guest(cpu,"bad write address %#lx len %u", addr, bytes);
}
/*:*/

@@-176,10 +176,8 @@ void __lgwrite(struct lguest *lg, unsigned long addr, const 
void *b,
 * going around and around until something interesting happens. */
int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
{
-       structlguest *lg = cpu->lg;
-
        /* We stop running once the Guest is dead. */
-       while(!lg->dead) {
+       while(!cpu->lg->dead) {
                /* First we run any hypercalls the Guest wants done. */
                if (cpu->hcall)
                        do_hypercalls(cpu);
@@-212,7 +210,7 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user)

                /* Just make absolutely sure the Guest is still alive.  One of
                 * those hypercalls could have been fatal, for example. */
-               if(lg->dead)
+               if(cpu->lg->dead)
                        break;

                /* If the Guest asked to be stopped, we sleep.  The Guest's
@@-237,7 +235,7 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
                lguest_arch_handle_trap(cpu);
        }

-       if(lg->dead == ERR_PTR(-ERESTART))
+       if(cpu->lg->dead == ERR_PTR(-ERESTART))
                return -ERESTART;
        /* The Guest is dead => "No such file or directory" */
        return -ENOENT;
diff--git a/drivers/lguest/hypercalls.c b/drivers/lguest/hypercalls.c
index0471018..32666d0 100644
---a/drivers/lguest/hypercalls.c
+++b/drivers/lguest/hypercalls.c
@@-31,8 +31,6 @@
 * Or gets killed.  Or, in the case of LHCALL_CRASH, both. */
static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
{
-       structlguest *lg = cpu->lg;
-
        switch (args->arg0) {
        case LHCALL_FLUSH_ASYNC:
                /* This call does nothing, except by breaking out of the Guest
@@-41,7 +39,7 @@ static void do_hcall(struct lg_cpu *cpu, struct hcall_args 
*args)
        case LHCALL_LGUEST_INIT:
                /* You can't get here unless you're already initialized.  Don't
                 * do that. */
-               kill_guest(lg,"already have lguest_data");
+               kill_guest(cpu,"already have lguest_data");
                break;
        case LHCALL_SHUTDOWN: {
                /* Shutdown is such a trivial hypercall that we do it in four
@@-49,11 +47,11 @@ static void do_hcall(struct lg_cpu *cpu, struct hcall_args 
*args)
                char msg[128];
                /* If the lgread fails, it will call kill_guest() itself; the
                 * kill_guest() with the message will be ignored. */
-               __lgread(lg,msg, args->arg1, sizeof(msg));
+               __lgread(cpu,msg, args->arg1, sizeof(msg));
                msg[sizeof(msg)-1] = '\0';
-               kill_guest(lg,"CRASH: %s", msg);
+               kill_guest(cpu,"CRASH: %s", msg);
                if (args->arg2 == LGUEST_SHUTDOWN_RESTART)
-                       lg->dead= ERR_PTR(-ERESTART);
+                       cpu->lg->dead= ERR_PTR(-ERESTART);
                break;
        }
        case LHCALL_FLUSH_TLB:
@@-74,10 +72,10 @@ static void do_hcall(struct lg_cpu *cpu, struct hcall_args 
*args)
                guest_set_stack(cpu, args->arg1, args->arg2, args->arg3);
                break;
        case LHCALL_SET_PTE:
-               guest_set_pte(lg,args->arg1, args->arg2, __pte(args->arg3));
+               guest_set_pte(cpu,args->arg1, args->arg2, __pte(args->arg3));
                break;
        case LHCALL_SET_PMD:
-               guest_set_pmd(lg,args->arg1, args->arg2);
+               guest_set_pmd(cpu->lg,args->arg1, args->arg2);
                break;
        case LHCALL_SET_CLOCKEVENT:
                guest_set_clockevent(cpu, args->arg1);
@@-96,7 +94,7 @@ static void do_hcall(struct lg_cpu *cpu, struct hcall_args 
*args)
        default:
                /* It should be an architecture-specific hypercall. */
                if (lguest_arch_do_hcall(cpu, args))
-                       kill_guest(lg,"Bad hypercall %li\n", args->arg0);
+                       kill_guest(cpu,"Bad hypercall %li\n", args->arg0);
        }
}
/*:*/
@@-112,10 +110,9 @@ static void do_async_hcalls(struct lg_cpu *cpu)
{
        unsigned int i;
        u8 st[LHCALL_RING_SIZE];
-       structlguest *lg = cpu->lg;

        /* For simplicity, we copy the entire call status array in at once. */
-       if(copy_from_user(&st, &lg->lguest_data->hcall_status, sizeof(st)))
+       if(copy_from_user(&st, &cpu->lg->lguest_data->hcall_status, sizeof(st)))
                return;

        /* We process "struct lguest_data"s hcalls[] ring once. */
@@-137,9 +134,9 @@ static void do_async_hcalls(struct lg_cpu *cpu)

                /* Copy the hypercall arguments into a local copy of
                 * the hcall_args struct. */
-               if(copy_from_user(&args, &lg->lguest_data->hcalls[n],
+               if(copy_from_user(&args, &cpu->lg->lguest_data->hcalls[n],
                                   sizeof(struct hcall_args))) {
-                       kill_guest(lg,"Fetching async hypercalls");
+                       kill_guest(cpu,"Fetching async hypercalls");
                        break;
                }

@@-147,8 +144,8 @@ static void do_async_hcalls(struct lg_cpu *cpu)
                do_hcall(cpu, &args);

                /* Mark the hypercall done. */
-               if(put_user(0xFF, &lg->lguest_data->hcall_status[n])) {
-                       kill_guest(lg,"Writing result for async hypercall");
+               if(put_user(0xFF, &cpu->lg->lguest_data->hcall_status[n])) {
+                       kill_guest(cpu,"Writing result for async hypercall");
                        break;
                }

@@-163,29 +160,28 @@ static void do_async_hcalls(struct lg_cpu *cpu)
 * Guest makes a hypercall, we end up here to set things up: */
static void initialize(struct lg_cpu *cpu)
{
-       structlguest *lg = cpu->lg;
        /* You can't do anything until you're initialized.  The Guest knows the
         * rules, so we're unforgiving here. */
        if (cpu->hcall->arg0 != LHCALL_LGUEST_INIT) {
-               kill_guest(lg,"hypercall %li before INIT", cpu->hcall->arg0);
+               kill_guest(cpu,"hypercall %li before INIT", cpu->hcall->arg0);
                return;
        }

        if (lguest_arch_init_hypercalls(cpu))
-               kill_guest(lg,"bad guest page %p", lg->lguest_data);
+               kill_guest(cpu,"bad guest page %p", cpu->lg->lguest_data);

        /* The Guest tells us where we're not to deliver interrupts by putting
         * the range of addresses into "struct lguest_data". */
-       if(get_user(lg->noirq_start, &lg->lguest_data->noirq_start)
-          || get_user(lg->noirq_end, &lg->lguest_data->noirq_end))
-               kill_guest(lg,"bad guest page %p", lg->lguest_data);
+       if(get_user(cpu->lg->noirq_start, &cpu->lg->lguest_data->noirq_start)
+          || get_user(cpu->lg->noirq_end, &cpu->lg->lguest_data->noirq_end))
+               kill_guest(cpu,"bad guest page %p", cpu->lg->lguest_data);

        /* We write the current time into the Guest's data page once so it can
         * set its clock. */
-       write_timestamp(lg);
+       write_timestamp(cpu);

        /* page_tables.c will also do some setup. */
-       page_table_guest_data_init(lg);
+       page_table_guest_data_init(cpu);

        /* This is the one case where the above accesses might have been the
         * first write to a Guest page.  This may have caused a copy-on-write
@@-237,10 +233,11 @@ void do_hypercalls(struct lg_cpu *cpu)

/* This routine supplies the Guest with time: it's used for wallclock time at
 * initial boot and as a rough time source if the TSC isn't available. */
-voidwrite_timestamp(struct lguest *lg)
+voidwrite_timestamp(struct lg_cpu *cpu)
{
        struct timespec now;
        ktime_get_real_ts(&now);
-       if(copy_to_user(&lg->lguest_data->time, &now, sizeof(struct timespec)))
-               kill_guest(lg,"Writing timestamp");
+       if(copy_to_user(&cpu->lg->lguest_data->time,
+                       &now, sizeof(struct timespec)))
+               kill_guest(cpu,"Writing timestamp");
}
diff--git a/drivers/lguest/interrupts_and_traps.c 
b/drivers/lguest/interrupts_and_traps.c
index9ac7455..cef64d5 100644
---a/drivers/lguest/interrupts_and_traps.c
+++b/drivers/lguest/interrupts_and_traps.c
@@-41,11 +41,11 @@ static int idt_present(u32 lo, u32 hi)

/* We need a helper to "push" a value onto the Guest's stack, since that's a
 * big part of what delivering an interrupt does. */
-staticvoid push_guest_stack(struct lguest *lg, unsigned long *gstack, u32 val)
+staticvoid push_guest_stack(struct lg_cpu *cpu, unsigned long *gstack, u32 val)
{
        /* Stack grows upwards: move stack then write value. */
        *gstack -= 4;
-       lgwrite(lg,*gstack, u32, val);
+       lgwrite(cpu,*gstack, u32, val);
}

/*H:210 The set_guest_interrupt() routine actually delivers the interrupt or
@@-65,7 +65,6 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, 
u32 hi, int has_err)
        unsigned long gstack, origstack;
        u32 eflags, ss, irq_enable;
        unsigned long virtstack;
-       structlguest *lg = cpu->lg;

        /* There are two cases for interrupts: one where the Guest is already
         * in the kernel, and a more complex one where the Guest is in
@@-81,8 +80,8 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, 
u32 hi, int has_err)
                 * stack: when the Guest does an "iret" back from the interrupt
                 * handler the CPU will notice they're dropping privilege
                 * levels and expect these here. */
-               push_guest_stack(lg,&gstack, cpu->regs->ss);
-               push_guest_stack(lg,&gstack, cpu->regs->esp);
+               push_guest_stack(cpu,&gstack, cpu->regs->ss);
+               push_guest_stack(cpu,&gstack, cpu->regs->esp);
        } else {
                /* We're staying on the same Guest (kernel) stack. */
                virtstack = cpu->regs->esp;
@@-96,20 +95,20 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, 
u32 hi, int has_err)
         * Guest's "irq_enabled" field into the eflags word: we saw the Guest
         * copy it back in "lguest_iret". */
        eflags = cpu->regs->eflags;
-       if(get_user(irq_enable, &lg->lguest_data->irq_enabled) == 0
+       if(get_user(irq_enable, &lg_data(cpu)->irq_enabled) == 0
            && !(irq_enable & X86_EFLAGS_IF))
                eflags &= ~X86_EFLAGS_IF;

        /* An interrupt is expected to push three things on the stack: the old
         * "eflags" word, the old code segment, and the old instruction
         * pointer. */
-       push_guest_stack(lg,&gstack, eflags);
-       push_guest_stack(lg,&gstack, cpu->regs->cs);
-       push_guest_stack(lg,&gstack, cpu->regs->eip);
+       push_guest_stack(cpu,&gstack, eflags);
+       push_guest_stack(cpu,&gstack, cpu->regs->cs);
+       push_guest_stack(cpu,&gstack, cpu->regs->eip);

        /* For the six traps which supply an error code, we push that, too. */
        if (has_err)
-               push_guest_stack(lg,&gstack, cpu->regs->errcode);
+               push_guest_stack(cpu,&gstack, cpu->regs->errcode);

        /* Now we've pushed all the old state, we change the stack, the code
         * segment and the address to execute. */
@@-121,8 +120,8 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, 
u32 hi, int has_err)
        /* There are two kinds of interrupt handlers: 0xE is an "interrupt
         * gate" which expects interrupts to be disabled on entry. */
        if (idt_type(lo, hi) == 0xE)
-               if(put_user(0, &lg->lguest_data->irq_enabled))
-                       kill_guest(lg,"Disabling interrupts");
+               if(put_user(0, &lg_data(cpu)->irq_enabled))
+                       kill_guest(cpu,"Disabling interrupts");
}

/*H:205
@@-133,17 +132,16 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 
lo, u32 hi, int has_err)
void maybe_do_interrupt(struct lg_cpu *cpu)
{
        unsigned int irq;
-       structlguest *lg = cpu->lg;
        DECLARE_BITMAP(blk, LGUEST_IRQS);
        struct desc_struct *idt;

        /* If the Guest hasn't even initialized yet, we can do nothing. */
-       if(!lg->lguest_data)
+       if(!lg_data(cpu))
                return;

        /* Take our "irqs_pending" array and remove any interrupts the Guest
         * wants blocked: the result ends up in "blk". */
-       if(copy_from_user(&blk, lg->lguest_data->blocked_interrupts,
+       if(copy_from_user(&blk, lg_data(cpu)->blocked_interrupts,
                           sizeof(blk)))
                return;

@@-157,19 +155,20 @@ void maybe_do_interrupt(struct lg_cpu *cpu)

        /* They may be in the middle of an iret, where they asked us never to
         * deliver interrupts. */
-       if(cpu->regs->eip >= lg->noirq_start && cpu->regs->eip < lg->noirq_end)
+       if(cpu->regs->eip >= cpu->lg->noirq_start &&
+         (cpu->regs->eip < cpu->lg->noirq_end))
                return;

        /* If they're halted, interrupts restart them. */
        if (cpu->halted) {
                /* Re-enable interrupts. */
-               if(put_user(X86_EFLAGS_IF, &lg->lguest_data->irq_enabled))
-                       kill_guest(lg,"Re-enabling interrupts");
+               if(put_user(X86_EFLAGS_IF, &lg_data(cpu)->irq_enabled))
+                       kill_guest(cpu,"Re-enabling interrupts");
                cpu->halted = 0;
        } else {
                /* Otherwise we check if they have interrupts disabled. */
                u32 irq_enabled;
-               if(get_user(irq_enabled, &lg->lguest_data->irq_enabled))
+               if(get_user(irq_enabled, &lg_data(cpu)->irq_enabled))
                        irq_enabled = 0;
                if (!irq_enabled)
                        return;
@@-194,7 +193,7 @@ void maybe_do_interrupt(struct lg_cpu *cpu)
         * did this more often, but it can actually be quite slow: doing it
         * here is a compromise which means at least it gets updated every
         * timer interrupt. */
-       write_timestamp(lg);
+       write_timestamp(cpu);
}
/*:*/

@@-315,10 +314,9 @@ void pin_stack_pages(struct lg_cpu *cpu)
{
        unsigned int i;

-       structlguest *lg = cpu->lg;
        /* Depending on the CONFIG_4KSTACKS option, the Guest can have one or
         * two pages of stack space. */
-       for(i = 0; i < lg->stack_pages; i++)
+       for(i = 0; i < cpu->lg->stack_pages; i++)
                /* The stack grows *upwards*, so the address we're given is the
                 * start of the page after the kernel stack.  Subtract one to
                 * get back onto the first stack page, and keep subtracting to
@@-339,10 +337,10 @@ void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, 
unsigned int pages)
        /* You are not allowed have a stack segment with privilege level 0: bad
         * Guest! */
        if ((seg & 0x3) != GUEST_PL)
-               kill_guest(cpu->lg,"bad stack segment %i", seg);
+               kill_guest(cpu,"bad stack segment %i", seg);
        /* We only expect one or two stack pages. */
        if (pages > 2)
-               kill_guest(cpu->lg,"bad stack pages %u", pages);
+               kill_guest(cpu,"bad stack pages %u", pages);
        /* Save where the stack is, and how many pages */
        cpu->ss1 = seg;
        cpu->esp1 = esp;
@@-356,7 +354,7 @@ void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, 
unsigned int pages)

/*H:235 This is the routine which actually checks the Guest's IDT entry and
 * transfers it into the entry in "struct lguest": */
-staticvoid set_trap(struct lguest *lg, struct desc_struct *trap,
+staticvoid set_trap(struct lg_cpu *cpu, struct desc_struct *trap,
                     unsigned int num, u32 lo, u32 hi)
{
        u8 type = idt_type(lo, hi);
@@-369,7 +367,7 @@ static void set_trap(struct lguest *lg, struct desc_struct 
*trap,

        /* We only support interrupt and trap gates. */
        if (type != 0xE && type != 0xF)
-               kill_guest(lg,"bad IDT type %i", type);
+               kill_guest(cpu,"bad IDT type %i", type);

        /* We only copy the handler address, present bit, privilege level and
         * type.  The privilege level controls where the trap can be triggered
@@-399,9 +397,9 @@ void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int 
num, u32 lo, u32 hi)

        /* Check that the Guest doesn't try to step outside the bounds. */
        if (num >= ARRAY_SIZE(cpu->arch.idt))
-               kill_guest(cpu->lg,"Setting idt entry %u", num);
+               kill_guest(cpu,"Setting idt entry %u", num);
        else
-               set_trap(cpu->lg,&cpu->arch.idt[num], num, lo, hi);
+               set_trap(cpu,&cpu->arch.idt[num], num, lo, hi);
}

/* The default entry for each interrupt points into the Switcher routines which
diff--git a/drivers/lguest/lg.h b/drivers/lguest/lg.h
index5458af8..f9707cf 100644
---a/drivers/lguest/lg.h
+++b/drivers/lguest/lg.h
@@-106,27 +106,29 @@ struct lguest
        const char *dead;
};

+#definelg_data(cpu) ((cpu)->lg->lguest_data)
+
extern struct mutex lguest_lock;

/* core.c: */
int lguest_address_ok(const struct lguest *lg,
                      unsigned long addr, unsigned long len);
-void__lgread(struct lguest *, void *, unsigned long, unsigned);
-void__lgwrite(struct lguest *, unsigned long, const void *, unsigned);
+void__lgread(struct lg_cpu *, void *, unsigned long, unsigned);
+void__lgwrite(struct lg_cpu *, unsigned long, const void *, unsigned);

/*H:035 Using memory-copy operations like that is usually inconvient, so we
 * have the following helper macros which read and write a specific type (often
 * an unsigned long).
 *
 * This reads into a variable of the given type then returns that. */
-#definelgread(lg, addr, type)                                          \
-       ({type _v; __lgread((lg), &_v, (addr), sizeof(_v)); _v; })
+#definelgread(cpu, addr, type)                                         \
+       ({type _v; __lgread((cpu), &_v, (addr), sizeof(_v)); _v; })

/* This checks that the variable is of the given type, then writes it out. */
-#definelgwrite(lg, addr, type, val)                            \
+#definelgwrite(cpu, addr, type, val)                           \
        do {                                                    \
                typecheck(type, val);                           \
-               __lgwrite((lg),(addr), &(val), sizeof(val));    \
+               __lgwrite((cpu),(addr), &(val), sizeof(val));   \
        } while(0)
/* (end of memory access helper routines) :*/

@@-170,13 +172,13 @@ void guest_new_pagetable(struct lg_cpu *cpu, unsigned long 
pgtable);
void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 i);
void guest_pagetable_clear_all(struct lg_cpu *cpu);
void guest_pagetable_flush_user(struct lg_cpu *cpu);
-voidguest_set_pte(struct lguest *lg, unsigned long gpgdir,
+voidguest_set_pte(struct lg_cpu *cpu, unsigned long gpgdir,
                   unsigned long vaddr, pte_t val);
void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages);
int demand_page(struct lg_cpu *cpu, unsigned long cr2, int errcode);
void pin_page(struct lg_cpu *cpu, unsigned long vaddr);
unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr);
-voidpage_table_guest_data_init(struct lguest *lg);
+voidpage_table_guest_data_init(struct lg_cpu *cpu);

/* <arch>/core.c: */
void lguest_arch_host_init(void);
@@-196,7 +198,7 @@ void lguest_device_remove(void);

/* hypercalls.c: */
void do_hypercalls(struct lg_cpu *cpu);
-voidwrite_timestamp(struct lguest *lg);
+voidwrite_timestamp(struct lg_cpu *cpu);

/*L:035
 * Let's step aside for the moment, to study one important routine that's used
@@-222,12 +224,12 @@ void write_timestamp(struct lguest *lg);
 * Like any macro which uses an "if", it is safely wrapped in a run-once "do {
 * } while(0)".
 */
-#definekill_guest(lg, fmt...)                                  \
+#definekill_guest(cpu, fmt...)                                 \
do {                                                            \
-       if(!(lg)->dead) {                                       \
-               (lg)->dead= kasprintf(GFP_ATOMIC, fmt); \
-               if(!(lg)->dead)                         \
-                       (lg)->dead= ERR_PTR(-ENOMEM);           \
+       if(!(cpu)->lg->dead) {                                  \
+               (cpu)->lg->dead= kasprintf(GFP_ATOMIC, fmt);    \
+               if(!(cpu)->lg->dead)                            \
+                       (cpu)->lg->dead= ERR_PTR(-ENOMEM);      \
        }                                                       \
} while(0)
/* (End of aside) :*/
diff--git a/drivers/lguest/page_tables.c b/drivers/lguest/page_tables.c
indexc9acafc..399c05d 100644
---a/drivers/lguest/page_tables.c
+++b/drivers/lguest/page_tables.c
@@-68,17 +68,17 @@ static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
 * page directory entry (PGD) for that address.  Since we keep track of several
 * page tables, the "i" argument tells us which one we're interested in (it's
 * usually the current one). */
-staticpgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
+staticpgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
{
        unsigned int index = pgd_index(vaddr);

        /* We kill any Guest trying to touch the Switcher addresses. */
        if (index >= SWITCHER_PGD_INDEX) {
-               kill_guest(lg,"attempt to access switcher pages");
+               kill_guest(cpu,"attempt to access switcher pages");
                index = 0;
        }
        /* Return a pointer index'th pgd entry for the i'th page table. */
-       return&lg->pgdirs[i].pgdir[index];
+       return&cpu->lg->pgdirs[i].pgdir[index];
}

/* This routine then takes the page directory entry returned above, which
@@-137,7 +137,7 @@ static unsigned long get_pfn(unsigned long virtpfn, int 
write)
 * entry can be a little tricky.  The flags are (almost) the same, but the
 * Guest PTE contains a virtual page number: the CPU needs the real page
 * number. */
-staticpte_t gpte_to_spte(struct lguest *lg, pte_t gpte, int write)
+staticpte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
{
        unsigned long pfn, base, flags;

@@-148,7 +148,7 @@ static pte_t gpte_to_spte(struct lguest *lg, pte_t gpte, int 
write)
        flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);

        /* The Guest's pages are offset inside the Launcher. */
-       base= (unsigned long)lg->mem_base / PAGE_SIZE;
+       base= (unsigned long)cpu->lg->mem_base / PAGE_SIZE;

        /* We need a temporary "unsigned long" variable to hold the answer from
         * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
@@-156,7 +156,7 @@ static pte_t gpte_to_spte(struct lguest *lg, pte_t gpte, int 
write)
         * page, given the virtual number. */
        pfn = get_pfn(base + pte_pfn(gpte), write);
        if (pfn == -1UL) {
-               kill_guest(lg,"failed to get page %lu", pte_pfn(gpte));
+               kill_guest(cpu,"failed to get page %lu", pte_pfn(gpte));
                /* When we destroy the Guest, we'll go through the shadow page
                 * tables and release_pte() them.  Make sure we don't think
                 * this one is valid! */
@@-176,17 +176,18 @@ static void release_pte(pte_t pte)
}
/*:*/

-staticvoid check_gpte(struct lguest *lg, pte_t gpte)
+staticvoid check_gpte(struct lg_cpu *cpu, pte_t gpte)
{
        if ((pte_flags(gpte) & (_PAGE_PWT|_PAGE_PSE))
-          || pte_pfn(gpte) >= lg->pfn_limit)
-               kill_guest(lg,"bad page table entry");
+          || pte_pfn(gpte) >= cpu->lg->pfn_limit)
+               kill_guest(cpu,"bad page table entry");
}

-staticvoid check_gpgd(struct lguest *lg, pgd_t gpgd)
+staticvoid check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
{
-       if((pgd_flags(gpgd) & ~_PAGE_TABLE) || pgd_pfn(gpgd) >= lg->pfn_limit)
-               kill_guest(lg,"bad page directory entry");
+       if((pgd_flags(gpgd) & ~_PAGE_TABLE) ||
+         (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
+               kill_guest(cpu,"bad page directory entry");
}

/*H:330
@@-206,27 +207,26 @@ int demand_page(struct lg_cpu *cpu, unsigned long vaddr, 
int errcode)
        unsigned long gpte_ptr;
        pte_t gpte;
        pte_t *spte;
-       structlguest *lg = cpu->lg;

        /* First step: get the top-level Guest page table entry. */
-       gpgd= lgread(lg, gpgd_addr(cpu, vaddr), pgd_t);
+       gpgd= lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
        /* Toplevel not present?  We can't map it in. */
        if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
                return 0;

        /* Now look at the matching shadow entry. */
-       spgd= spgd_addr(lg, cpu->cpu_pgd, vaddr);
+       spgd= spgd_addr(cpu, cpu->cpu_pgd, vaddr);
        if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
                /* No shadow entry: allocate a new shadow PTE page. */
                unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
                /* This is not really the Guest's fault, but killing it is
                 * simple for this corner case. */
                if (!ptepage) {
-                       kill_guest(lg,"out of memory allocating pte page");
+                       kill_guest(cpu,"out of memory allocating pte page");
                        return 0;
                }
                /* We check that the Guest pgd is OK. */
-               check_gpgd(lg,gpgd);
+               check_gpgd(cpu,gpgd);
                /* And we copy the flags to the shadow PGD entry.  The page
                 * number in the shadow PGD is the page we just allocated. */
                *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
@@-235,7 +235,7 @@ int demand_page(struct lg_cpu *cpu, unsigned long vaddr, int 
errcode)
        /* OK, now we look at the lower level in the Guest page table: keep its
         * address, because we might update it later. */
        gpte_ptr = gpte_addr(gpgd, vaddr);
-       gpte= lgread(lg, gpte_ptr, pte_t);
+       gpte= lgread(cpu, gpte_ptr, pte_t);

        /* If this page isn't in the Guest page tables, we can't page it in. */
        if (!(pte_flags(gpte) & _PAGE_PRESENT))
@@-252,7 +252,7 @@ int demand_page(struct lg_cpu *cpu, unsigned long vaddr, int 
errcode)

        /* Check that the Guest PTE flags are OK, and the page number is below
         * the pfn_limit (ie. not mapping the Launcher binary). */
-       check_gpte(lg,gpte);
+       check_gpte(cpu,gpte);

        /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
        gpte = pte_mkyoung(gpte);
@@-268,17 +268,17 @@ int demand_page(struct lg_cpu *cpu, unsigned long vaddr, 
int errcode)
        /* If this is a write, we insist that the Guest page is writable (the
         * final arg to gpte_to_spte()). */
        if (pte_dirty(gpte))
-               *spte= gpte_to_spte(lg, gpte, 1);
+               *spte= gpte_to_spte(cpu, gpte, 1);
        else
                /* If this is a read, don't set the "writable" bit in the page
                 * table entry, even if the Guest says it's writable.  That way
                 * we will come back here when a write does actually occur, so
                 * we can update the Guest's _PAGE_DIRTY flag. */
-               *spte= gpte_to_spte(lg, pte_wrprotect(gpte), 0);
+               *spte= gpte_to_spte(cpu, pte_wrprotect(gpte), 0);

        /* Finally, we write the Guest PTE entry back: we've set the
         * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
-       lgwrite(lg,gpte_ptr, pte_t, gpte);
+       lgwrite(cpu,gpte_ptr, pte_t, gpte);

        /* The fault is fixed, the page table is populated, the mapping
         * manipulated, the result returned and the code complete.  A small
@@-303,7 +303,7 @@ static int page_writable(struct lg_cpu *cpu, unsigned long 
vaddr)
        unsigned long flags;

        /* Look at the current top level entry: is it present? */
-       spgd= spgd_addr(cpu->lg, cpu->cpu_pgd, vaddr);
+       spgd= spgd_addr(cpu, cpu->cpu_pgd, vaddr);
        if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
                return 0;

@@-320,7 +320,7 @@ static int page_writable(struct lg_cpu *cpu, unsigned long 
vaddr)
void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
{
        if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
-               kill_guest(cpu->lg,"bad stack page %#lx", vaddr);
+               kill_guest(cpu,"bad stack page %#lx", vaddr);
}

/*H:450 If we chase down the release_pgd() code, it looks like this: */
@@-372,14 +372,14 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long 
vaddr)
        pte_t gpte;

        /* First step: get the top-level Guest page table entry. */
-       gpgd= lgread(cpu->lg, gpgd_addr(cpu, vaddr), pgd_t);
+       gpgd= lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
        /* Toplevel not present?  We can't map it in. */
        if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
-               kill_guest(cpu->lg,"Bad address %#lx", vaddr);
+               kill_guest(cpu,"Bad address %#lx", vaddr);

-       gpte= lgread(cpu->lg, gpte_addr(gpgd, vaddr), pte_t);
+       gpte= lgread(cpu, gpte_addr(gpgd, vaddr), pte_t);
        if (!(pte_flags(gpte) & _PAGE_PRESENT))
-               kill_guest(cpu->lg,"Bad address %#lx", vaddr);
+               kill_guest(cpu,"Bad address %#lx", vaddr);

        return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
}
@@-404,16 +404,16 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
                              int *blank_pgdir)
{
        unsigned int next;
-       structlguest *lg = cpu->lg;

        /* We pick one entry at random to throw out.  Choosing the Least
         * Recently Used might be better, but this is easy. */
-       next= random32() % ARRAY_SIZE(lg->pgdirs);
+       next= random32() % ARRAY_SIZE(cpu->lg->pgdirs);
        /* If it's never been allocated at all before, try now. */
-       if(!lg->pgdirs[next].pgdir) {
-               lg->pgdirs[next].pgdir= (pgd_t *)get_zeroed_page(GFP_KERNEL);
+       if(!cpu->lg->pgdirs[next].pgdir) {
+               cpu->lg->pgdirs[next].pgdir=
+                                       (pgd_t*)get_zeroed_page(GFP_KERNEL);
                /* If the allocation fails, just keep using the one we have */
-               if(!lg->pgdirs[next].pgdir)
+               if(!cpu->lg->pgdirs[next].pgdir)
                        next = cpu->cpu_pgd;
                else
                        /* This is a blank page, so there are no kernel
@@-421,9 +421,9 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
                        *blank_pgdir = 1;
        }
        /* Record which Guest toplevel this shadows. */
-       lg->pgdirs[next].gpgdir= gpgdir;
+       cpu->lg->pgdirs[next].gpgdir= gpgdir;
        /* Release all the non-kernel mappings. */
-       flush_user_mappings(lg,next);
+       flush_user_mappings(cpu->lg,next);

        return next;
}
@@-436,13 +436,12 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
{
        int newpgdir, repin = 0;
-       structlguest *lg = cpu->lg;

        /* Look to see if we have this one already. */
-       newpgdir= find_pgdir(lg, pgtable);
+       newpgdir= find_pgdir(cpu->lg, pgtable);
        /* If not, we allocate or mug an existing one: if it's a fresh one,
         * repin gets set to 1. */
-       if(newpgdir == ARRAY_SIZE(lg->pgdirs))
+       if(newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
                newpgdir = new_pgdir(cpu, pgtable, &repin);
        /* Change the current pgd index to the new one. */
        cpu->cpu_pgd = newpgdir;
@@-499,11 +498,11 @@ void guest_pagetable_clear_all(struct lg_cpu *cpu)
 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
 */
-staticvoid do_set_pte(struct lguest *lg, int idx,
+staticvoid do_set_pte(struct lg_cpu *cpu, int idx,
                       unsigned long vaddr, pte_t gpte)
{
        /* Look up the matching shadow page directory entry. */
-       pgd_t*spgd = spgd_addr(lg, idx, vaddr);
+       pgd_t*spgd = spgd_addr(cpu, idx, vaddr);

        /* If the top level isn't present, there's no entry to update. */
        if (pgd_flags(*spgd) & _PAGE_PRESENT) {
@@-515,8 +514,8 @@ static void do_set_pte(struct lguest *lg, int idx,
                 * as well put that entry they've given us in now.  This shaves
                 * 10% off a copy-on-write micro-benchmark. */
                if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
-                       check_gpte(lg,gpte);
-                       *spte= gpte_to_spte(lg, gpte,
+                       check_gpte(cpu,gpte);
+                       *spte= gpte_to_spte(cpu, gpte,
                                             pte_flags(gpte) & _PAGE_DIRTY);
                } else
                        /* Otherwise kill it and we can demand_page() it in
@@-535,22 +534,22 @@ static void do_set_pte(struct lguest *lg, int idx,
 *
 * The benefit is that when we have to track a new page table, we can copy keep
 * all the kernel mappings.  This speeds up context switch immensely. */
-voidguest_set_pte(struct lguest *lg,
+voidguest_set_pte(struct lg_cpu *cpu,
                   unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
{
        /* Kernel mappings must be changed on all top levels.  Slow, but
         * doesn't happen often. */
-       if(vaddr >= lg->kernel_address) {
+       if(vaddr >= cpu->lg->kernel_address) {
                unsigned int i;
-               for(i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
-                       if(lg->pgdirs[i].pgdir)
-                               do_set_pte(lg,i, vaddr, gpte);
+               for(i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
+                       if(cpu->lg->pgdirs[i].pgdir)
+                               do_set_pte(cpu,i, vaddr, gpte);
        } else {
                /* Is this page table one we have a shadow for? */
-               intpgdir = find_pgdir(lg, gpgdir);
-               if(pgdir != ARRAY_SIZE(lg->pgdirs))
+               intpgdir = find_pgdir(cpu->lg, gpgdir);
+               if(pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
                        /* If so, do the update. */
-                       do_set_pte(lg,pgdir, vaddr, gpte);
+                       do_set_pte(cpu,pgdir, vaddr, gpte);
        }
}

@@-601,21 +600,22 @@ int init_guest_pagetable(struct lguest *lg, unsigned long 
pgtable)
}

/* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
-voidpage_table_guest_data_init(struct lguest *lg)
+voidpage_table_guest_data_init(struct lg_cpu *cpu)
{
        /* We get the kernel address: above this is all kernel memory. */
-       if(get_user(lg->kernel_address, &lg->lguest_data->kernel_address)
+       if(get_user(cpu->lg->kernel_address, &lg_data(cpu)->kernel_address)
            /* We tell the Guest that it can't use the top 4MB of virtual
             * addresses used by the Switcher. */
-          || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem)
-          || put_user(lg->pgdirs[0].gpgdir, &lg->lguest_data->pgdir))
-               kill_guest(lg,"bad guest page %p", lg->lguest_data);
+          || put_user(4U*1024*1024, &lg_data(cpu)->reserve_mem)
+          || put_user(cpu->lg->pgdirs[0].gpgdir, &lg_data(cpu)->pgdir))
+               kill_guest(cpu,"bad guest page %p", lg_data(cpu));

        /* In flush_user_mappings() we loop from 0 to
         * "pgd_index(lg->kernel_address)".  This assumes it won't hit the
         * Switcher mappings, so check that now. */
-       if(pgd_index(lg->kernel_address) >= SWITCHER_PGD_INDEX)
-               kill_guest(lg,"bad kernel address %#lx", lg->kernel_address);
+       if(pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
+               kill_guest(cpu,"bad kernel address %#lx",
+                               cpu->lg->kernel_address);
}

/* When a Guest dies, our cleanup is fairly simple. */
diff--git a/drivers/lguest/segments.c b/drivers/lguest/segments.c
index635f54c..ec6aa3f 100644
---a/drivers/lguest/segments.c
+++b/drivers/lguest/segments.c
@@-148,14 +148,13 @@ void copy_gdt(const struct lg_cpu *cpu, struct desc_struct 
*gdt)
 * We copy it from the Guest and tweak the entries. */
void load_guest_gdt(struct lg_cpu *cpu, unsigned long table, u32 num)
{
-       structlguest *lg = cpu->lg;
        /* We assume the Guest has the same number of GDT entries as the
         * Host, otherwise we'd have to dynamically allocate the Guest GDT. */
        if (num > ARRAY_SIZE(cpu->arch.gdt))
-               kill_guest(lg,"too many gdt entries %i", num);
+               kill_guest(cpu,"too many gdt entries %i", num);

        /* We read the whole thing in, then fix it up. */
-       __lgread(lg,cpu->arch.gdt, table, num * sizeof(cpu->arch.gdt[0]));
+       __lgread(cpu,cpu->arch.gdt, table, num * sizeof(cpu->arch.gdt[0]));
        fixup_gdt_table(cpu, 0, ARRAY_SIZE(cpu->arch.gdt));
        /* Mark that the GDT changed so the core knows it has to copy it again,
         * even if the Guest is run on the same CPU. */
@@-169,9 +168,8 @@ void load_guest_gdt(struct lg_cpu *cpu, unsigned long table, 
u32 num)
void guest_load_tls(struct lg_cpu *cpu, unsigned long gtls)
{
        struct desc_struct *tls = &cpu->arch.gdt[GDT_ENTRY_TLS_MIN];
-       structlguest *lg = cpu->lg;

-       __lgread(lg,tls, gtls, sizeof(*tls)*GDT_ENTRY_TLS_ENTRIES);
+       __lgread(cpu,tls, gtls, sizeof(*tls)*GDT_ENTRY_TLS_ENTRIES);
        fixup_gdt_table(cpu, GDT_ENTRY_TLS_MIN, GDT_ENTRY_TLS_MAX+1);
        /* Note that just the TLS entries have changed. */
        cpu->changed |= CHANGED_GDT_TLS;
diff--git a/drivers/lguest/x86/core.c b/drivers/lguest/x86/core.c
indexdea52d5..8521be4 100644
---a/drivers/lguest/x86/core.c
+++b/drivers/lguest/x86/core.c
@@-94,7 +94,7 @@ static void copy_in_guest_info(struct lg_cpu *cpu, struct 
lguest_pages *pages)
        /* Set up the two "TSS" members which tell the CPU what stack to use
         * for traps which do directly into the Guest (ie. traps at privilege
         * level 1). */
-       pages->state.guest_tss.sp1= cpu->esp1;
+       pages->state.guest_tss.esp1= cpu->esp1;
        pages->state.guest_tss.ss1 = cpu->ss1;

        /* Copy direct-to-Guest trap entries. */
@@-117,7 +117,6 @@ static void run_guest_once(struct lg_cpu *cpu, struct 
lguest_pages *pages)
{
        /* This is a dummy value we need for GCC's sake. */
        unsigned int clobber;
-       structlguest *lg = cpu->lg;

        /* Copy the guest-specific information into this CPU's "struct
         * lguest_pages". */
@@-144,7 +143,7 @@ static void run_guest_once(struct lg_cpu *cpu, struct 
lguest_pages *pages)
                      * 0-th argument above, ie "a").  %ebx contains the
                      * physical address of the Guest's top-level page
                      * directory. */
-                   : "0"(pages), "1"(__pa(lg->pgdirs[cpu->cpu_pgd].pgdir))
+                   : "0"(pages), "1"(__pa(cpu->lg->pgdirs[cpu->cpu_pgd].pgdir))
                     /* We tell gcc that all these registers could change,
                      * which means we don't have to save and restore them in
                      * the Switcher. */
@@-217,7 +216,6 @@ void lguest_arch_run_guest(struct lg_cpu *cpu)
 * instructions and skip over it.  We return true if we did. */
static int emulate_insn(struct lg_cpu *cpu)
{
-       structlguest *lg = cpu->lg;
        u8 insn;
        unsigned int insnlen = 0, in = 0, shift = 0;
        /* The eip contains the *virtual* address of the Guest's instruction:
@@-231,7 +229,7 @@ static int emulate_insn(struct lg_cpu *cpu)
                return 0;

        /* Decoding x86 instructions is icky. */
-       insn= lgread(lg, physaddr, u8);
+       insn= lgread(cpu, physaddr, u8);

        /* 0x66 is an "operand prefix".  It means it's using the upper 16 bits
           of the eax register. */
@@-239,7 +237,7 @@ static int emulate_insn(struct lg_cpu *cpu)
                shift = 16;
                /* The instruction is 1 byte so far, read the next byte. */
                insnlen = 1;
-               insn= lgread(lg, physaddr + insnlen, u8);
+               insn= lgread(cpu, physaddr + insnlen, u8);
        }

        /* We can ignore the lower bit for the moment and decode the 4 opcodes
@@-283,7 +281,6 @@ static int emulate_insn(struct lg_cpu *cpu)
/*H:050 Once we've re-enabled interrupts, we look at why the Guest exited. */
void lguest_arch_handle_trap(struct lg_cpu *cpu)
{
-       structlguest *lg = cpu->lg;
        switch (cpu->regs->trapnum) {
        case 13: /* We've intercepted a General Protection Fault. */
                /* Check if this was one of those annoying IN or OUT
@@-315,9 +312,9 @@ void lguest_arch_handle_trap(struct lg_cpu *cpu)
                 * Note that if the Guest were really messed up, this could
                 * happen before it's done the LHCALL_LGUEST_INIT hypercall, so
                 * lg->lguest_data could be NULL */
-               if(lg->lguest_data &&
-                  put_user(cpu->arch.last_pagefault, &lg->lguest_data->cr2))
-                       kill_guest(lg,"Writing cr2");
+               if(lg_data(cpu) &&
+                  put_user(cpu->arch.last_pagefault, &lg_data(cpu)->cr2))
+                       kill_guest(cpu,"Writing cr2");
                break;
        case 7: /* We've intercepted a Device Not Available fault. */
                /* If the Guest doesn't want to know, we already restored the
@@-345,7 +342,7 @@ void lguest_arch_handle_trap(struct lg_cpu *cpu)
                /* If the Guest doesn't have a handler (either it hasn't
                 * registered any yet, or it's one of the faults we don't let
                 * it handle), it dies with a cryptic error message. */
-               kill_guest(lg,"unhandled trap %li at %#lx (%#lx)",
+               kill_guest(cpu,"unhandled trap %li at %#lx (%#lx)",
                           cpu->regs->trapnum, cpu->regs->eip,
                           cpu->regs->trapnum == 14 ? cpu->arch.last_pagefault
                           : cpu->regs->errcode);
@@-514,11 +511,10 @@ int lguest_arch_do_hcall(struct lg_cpu *cpu, struct 
hcall_args *args)
int lguest_arch_init_hypercalls(struct lg_cpu *cpu)
{
        u32 tsc_speed;
-       structlguest *lg = cpu->lg;

        /* The pointer to the Guest's "struct lguest_data" is the only
         * argument.  We check that address now. */
-       if(!lguest_address_ok(lg, cpu->hcall->arg1, sizeof(*lg->lguest_data)))
+       if(!lguest_address_ok(cpu->lg, cpu->hcall->arg1, sizeof(*lg_data(cpu))))
                return -EFAULT;

        /* Having checked it, we simply set lg->lguest_data to point straight
@@-526,7 +522,7 @@ int lguest_arch_init_hypercalls(struct lg_cpu *cpu)
         * copy_to_user/from_user from now on, instead of lgread/write.  I put
         * this in to show that I'm not immune to writing stupid
         * optimizations. */
-       lg->lguest_data= lg->mem_base + cpu->hcall->arg1;
+       lg_data(cpu)= cpu->lg->mem_base + cpu->hcall->arg1;

        /* We insist that the Time Stamp Counter exist and doesn't change with
         * cpu frequency.  Some devious chip manufacturers decided that TSC
@@-539,12 +535,12 @@ int lguest_arch_init_hypercalls(struct lg_cpu *cpu)
                tsc_speed = tsc_khz;
        else
                tsc_speed = 0;
-       if(put_user(tsc_speed, &lg->lguest_data->tsc_khz))
+       if(put_user(tsc_speed, &lg_data(cpu)->tsc_khz))
                return -EFAULT;

        /* The interrupt code might not like the system call vector. */
-       if(!check_syscall_vector(lg))
-               kill_guest(lg,"bad syscall vector");
+       if(!check_syscall_vector(cpu->lg))
+               kill_guest(cpu,"bad syscall vector");

        return 0;
}
--
1.5.0.6

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to [EMAIL PROTECTED]
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Reply via email to