Consider the following topology: DIE [ ] MC [ ][ ] 0 1 2 3
capacity_orig_of(x \in {0-1}) < capacity_orig_of(x \in {2-3}) w/ CPUs 2-3 idle and CPUs 0-1 running CPU hogs (util_avg=1024). When CPU2 goes through load_balance() (via periodic / NOHZ balance), it should pull one CPU hog from either CPU0 or CPU1 (this is misfit task upmigration). However, should a e.g. pcpu kworker awake on CPU0 just before this load_balance() happens and preempt the CPU hog running there, we would have, for the [0-1] group at CPU2's DIE level: o sgs->sum_nr_running > sgs->group_weight o sgs->group_capacity * 100 < sgs->group_util * imbalance_pct IOW, this group is group_overloaded. Considering CPU0 is picked by find_busiest_queue(), we would then visit the preempted CPU hog in detach_tasks(). However, given it has just been preempted by this pcpu kworker, task_hot() will prevent it from being detached. We then leave load_balance() without having done anything. Long story short, preempted misfit tasks are affected by task_hot(), while currently running misfit tasks are intentionally preempted by the stopper task to migrate them over to a higher-capacity CPU. Align detach_tasks() with the active-balance logic and let it pick a cache-hot misfit task when the destination CPU can provide a capacity uplift. Signed-off-by: Valentin Schneider <valentin.schnei...@arm.com> --- kernel/sched/fair.c | 36 ++++++++++++++++++++++++++++++++++++ 1 file changed, 36 insertions(+) diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index d2d1a69d7aa7..43fc98d34276 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -7493,6 +7493,7 @@ struct lb_env { enum fbq_type fbq_type; enum migration_type migration_type; enum group_type src_grp_type; + enum group_type dst_grp_type; struct list_head tasks; }; @@ -7533,6 +7534,31 @@ static int task_hot(struct task_struct *p, struct lb_env *env) return delta < (s64)sysctl_sched_migration_cost; } + +/* + * What does migrating this task do to our capacity-aware scheduling criterion? + * + * Returns 1, if the task needs more capacity than the dst CPU can provide. + * Returns 0, if the task needs the extra capacity provided by the dst CPU + * Returns -1, if the task isn't impacted by the migration wrt capacity. + */ +static int migrate_degrades_capacity(struct task_struct *p, struct lb_env *env) +{ + if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) + return -1; + + if (!task_fits_capacity(p, capacity_of(env->src_cpu))) { + if (cpu_capacity_greater(env->dst_cpu, env->src_cpu)) + return 0; + else if (cpu_capacity_greater(env->src_cpu, env->dst_cpu)) + return 1; + else + return -1; + } + + return task_fits_capacity(p, capacity_of(env->dst_cpu)) ? -1 : 1; +} + #ifdef CONFIG_NUMA_BALANCING /* * Returns 1, if task migration degrades locality @@ -7672,6 +7698,15 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env) if (tsk_cache_hot == -1) tsk_cache_hot = task_hot(p, env); + /* + * On a (sane) asymmetric CPU capacity system, the increase in compute + * capacity should offset any potential performance hit caused by a + * migration. + */ + if ((env->dst_grp_type == group_has_spare) && + !migrate_degrades_capacity(p, env)) + tsk_cache_hot = 0; + if (tsk_cache_hot <= 0 || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { if (tsk_cache_hot == 1) { @@ -9310,6 +9345,7 @@ static struct sched_group *find_busiest_group(struct lb_env *env) if (!sds.busiest) goto out_balanced; + env->dst_grp_type = local->group_type; env->src_grp_type = busiest->group_type; /* Misfit tasks should be dealt with regardless of the avg load */ -- 2.25.1