Hi Dan & vinod, Do you have any comments about this patch?
Thanks, Forrest -----Original Message----- From: Shi Xuelin-B29237 Sent: 2012年11月21日 17:01 To: dan.j.willi...@gmail.com; vinod.k...@intel.com; linuxppc-...@lists.ozlabs.org; linux-kernel@vger.kernel.org Cc: i...@ovro.caltech.edu; Shi Xuelin-B29237; Rai Harninder-B01044; Burmi Naveen-B16502 Subject: [PATCH 2/2] powerpc/dma/raidengine: enable Freescale RaidEngine device From: Xuelin Shi <b29...@freescale.com> The RaidEngine is a new FSL hardware that used as hardware acceration for RAID5/6. This patch enables the RaidEngine functionality and provides hardware offloading capability for memcpy, xor and raid6 pq computation. It works under dmaengine control with async_layer interface. Signed-off-by: Harninder Rai <harninder....@freescale.com> Signed-off-by: Naveen Burmi <naveenbu...@freescale.com> Signed-off-by: Xuelin Shi <b29...@freescale.com> --- drivers/dma/Kconfig | 14 + drivers/dma/Makefile | 1 + drivers/dma/fsl_raid.c | 990 ++++++++++++++++++++++++++++++++++++++++++++++++ drivers/dma/fsl_raid.h | 317 ++++++++++++++++ 4 files changed, 1322 insertions(+) create mode 100644 drivers/dma/fsl_raid.c create mode 100644 drivers/dma/fsl_raid.h diff --git a/drivers/dma/Kconfig b/drivers/dma/Kconfig index d4c1218..aa37279 100644 --- a/drivers/dma/Kconfig +++ b/drivers/dma/Kconfig @@ -320,6 +320,20 @@ config MMP_PDMA help Support the MMP PDMA engine for PXA and MMP platfrom. +config FSL_RAID + tristate "Freescale RAID Engine Device Driver" + depends on FSL_SOC && !FSL_DMA + select DMA_ENGINE + select ASYNC_TX_ENABLE_CHANNEL_SWITCH + select ASYNC_MEMCPY + select ASYNC_XOR + select ASYNC_PQ + ---help--- + Enable support for Freescale RAID Engine. RAID Engine is + available on some QorIQ SoCs (like P5020). It has + the capability to offload RAID5/RAID6 operations from CPU. + RAID5 is XOR and memcpy. RAID6 is P/Q and memcpy + config DMA_ENGINE bool diff --git a/drivers/dma/Makefile b/drivers/dma/Makefile index 7428fea..29b65eb 100644 --- a/drivers/dma/Makefile +++ b/drivers/dma/Makefile @@ -9,6 +9,7 @@ obj-$(CONFIG_DMATEST) += dmatest.o obj-$(CONFIG_INTEL_IOATDMA) += ioat/ obj-$(CONFIG_INTEL_IOP_ADMA) += iop-adma.o obj-$(CONFIG_FSL_DMA) += fsldma.o +obj-$(CONFIG_FSL_RAID) += fsl_raid.o obj-$(CONFIG_MPC512X_DMA) += mpc512x_dma.o obj-$(CONFIG_MV_XOR) += mv_xor.o obj-$(CONFIG_DW_DMAC) += dw_dmac.o diff --git a/drivers/dma/fsl_raid.c b/drivers/dma/fsl_raid.c new file mode 100644 index 0000000..ec19817 --- /dev/null +++ b/drivers/dma/fsl_raid.c @@ -0,0 +1,990 @@ +/* + * drivers/dma/fsl_raid.c + * + * Freescale RAID Engine device driver + * + * Author: + * Harninder Rai <harninder....@freescale.com> + * Naveen Burmi <naveenbu...@freescale.com> + * + * Copyright (c) 2010-2012 Freescale Semiconductor, Inc. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * * Neither the name of Freescale Semiconductor nor the + * names of its contributors may be used to endorse or promote products + * derived from this software without specific prior written permission. + * + * ALTERNATIVELY, this software may be distributed under the terms of +the + * GNU General Public License ("GPL") as published by the Free Software + * Foundation, either version 2 of that License or (at your option) any + * later version. + * + * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND +ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE + * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR +ANY + * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND + * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE +USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * Theory of operation: + * + * General capabilities: + * RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q + * calculations required in RAID5 and RAID6 operations. RE driver + * registers with Linux's ASYNC layer as dma driver. RE hardware + * maintains strict ordering of the requests through chained + * command queueing. + * + * Data flow: + * Software RAID layer of Linux (MD layer) maintains RAID partitions, + * strips, stripes etc. It sends requests to the underlying AYSNC layer + * which further passes it to RE driver. ASYNC layer decides which request + * goes to which job ring of RE hardware. For every request processed by + * RAID Engine, driver gets an interrupt unless coalescing is set. The + * per job ring interrupt handler checks the status register for errors, + * clears the interrupt and schedules a tasklet. Main request processing + * is done in tasklet. A software shadow copy of the HW ring is kept to + * maintain virtual to physical translation. Based on the internal indexes + * maintained, the tasklet picks the descriptor address from shadow copy, + * updates the corresponding cookie, updates the outbound ring job removed + * register in RE hardware and eventually calls the callback function. This + * callback function gets passed as part of request from MD layer. + */ + +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/of_platform.h> +#include <linux/dma-mapping.h> +#include <linux/dmapool.h> +#include <linux/dmaengine.h> +#include <linux/io.h> +#include <linux/spinlock.h> +#include <linux/slab.h> + +#include "fsl_raid.h" + +#define MAX_XOR_SRCS 16 +#define MAX_PQ_SRCS 16 +#define MAX_INITIAL_DESCS 256 +#define FRAME_FORMAT 0x1 +#define MAX_DATA_LENGTH (1024*1024) + +#define to_fsl_re_dma_desc(tx) container_of(tx, \ + struct fsl_re_dma_async_tx_desc, async_tx) + +/* Add descriptors into per jr software queue - submit_q */ static +dma_cookie_t re_jr_tx_submit(struct dma_async_tx_descriptor *tx) { + struct fsl_re_dma_async_tx_desc *desc = NULL; + struct re_jr *jr = NULL; + dma_cookie_t cookie; + + desc = container_of(tx, struct fsl_re_dma_async_tx_desc, async_tx); + jr = container_of(tx->chan, struct re_jr, chan); + + spin_lock_bh(&jr->inb_lock); + + jr->timer.data = (unsigned long)tx->chan; + cookie = jr->chan.cookie + 1; + if (cookie < 0) + cookie = 1; + + desc->async_tx.cookie = cookie; + jr->chan.cookie = desc->async_tx.cookie; + jr->pend_count++; + + if (!timer_pending(&jr->timer)) + add_timer(&jr->timer); + + spin_unlock_bh(&jr->inb_lock); + + return cookie; +} + +static void re_jr_unmap_dest_src(struct fsl_re_dma_async_tx_desc *desc) +{ + int i, j; + struct cmpnd_frame *cf; + dma_addr_t dest1 = 0, dest2 = 0, src; + struct device *dev; + enum dma_ctrl_flags flags; + enum dma_data_direction dir; + + BUG_ON(!desc); + cf = desc->cf_addr; + dest1 = cf[1].address; + j = 2; + if (desc->dest_cnt == 2) { + dest2 = cf[2].address; + j = 3; + } + dev = desc->jr->chan.device->dev; + flags = desc->async_tx.flags; + if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) { + if (desc->cdb_opcode == RE_MOVE_OPCODE) + dir = DMA_FROM_DEVICE; + else + dir = DMA_BIDIRECTIONAL; + + dma_unmap_page(dev, dest1, desc->dma_len, dir); + + if (dest2) + dma_unmap_page(dev, dest2, desc->dma_len, dir); + } + + if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) { + dir = DMA_TO_DEVICE; + for (i = j; i < desc->src_cnt+j; i++) { + src = cf[i].address; + if (src == dest1 || src == dest2) + continue; + dma_unmap_page(dev, src, desc->dma_len, dir); + } + } +} + +static void re_jr_desc_done(struct fsl_re_dma_async_tx_desc *desc) { + struct re_jr *dma_jr = desc->jr; + dma_async_tx_callback callback; + void *callback_param; + + callback = desc->async_tx.callback; + callback_param = desc->async_tx.callback_param; + + dma_run_dependencies(&desc->async_tx); + + if (dma_jr->completed_cookie < desc->async_tx.cookie) { + dma_jr->completed_cookie = desc->async_tx.cookie; + if (dma_jr->completed_cookie == DMA_MAX_COOKIE) + dma_jr->completed_cookie = DMA_MIN_COOKIE; + } + + re_jr_unmap_dest_src(desc); + + if (callback) + callback(callback_param); + +} + +/* + * Get the virtual address of software desc from virt_addr. + * Storing the address of software desc like this makes the + * order of alogorithm as O(1) + */ +static void re_jr_dequeue(unsigned long data) { + struct device *dev; + struct re_jr *jr; + struct fsl_re_dma_async_tx_desc *desc; + unsigned int count; + struct fsl_re_dma_async_tx_desc *ack_desc = NULL, *_ack_desc = NULL; + + dev = (struct device *)data; + jr = dev_get_drvdata(dev); + + while ((count = + RE_JR_OUB_SLOT_FULL(in_be32(&jr->jrregs->oubring_slot_full)))) { + while (count--) { + spin_lock_bh(&jr->oub_lock); + jr->oub_count &= RING_SIZE - 1; + desc = &jr->descs[jr->oub_count++]; + + /* One job processed */ + out_be32(&jr->jrregs->oubring_job_rmvd, + RE_JR_OUB_JOB_REMOVE(1)); + spin_unlock_bh(&jr->oub_lock); + + spin_lock_bh(&jr->desc_lock); + list_add_tail(&desc->node, &jr->ack_q); + re_jr_desc_done(desc); + spin_unlock_bh(&jr->desc_lock); + } + } + + /* To save memory, parse the ack_q and free up descs */ + list_for_each_entry_safe(ack_desc, _ack_desc, &jr->ack_q, node) { + if (async_tx_test_ack(&ack_desc->async_tx)) { + spin_lock_bh(&jr->desc_lock); + list_del(&ack_desc->node); + ack_desc->state = RE_DESC_EMPTY; + ack_desc->async_tx.flags = 0; + spin_unlock_bh(&jr->desc_lock); + } + } +} + +/* Per Job Ring interrupt handler */ +static irqreturn_t re_jr_interrupt(int irq, void *data) { + struct device *dev = data; + struct re_jr *jr = dev_get_drvdata(dev); + u32 irqstate, status; + + irqstate = in_be32(&jr->jrregs->jr_interrupt_status); + if (!irqstate) + return IRQ_NONE; + + /* + * There's no way in upper layer (read MD layer) to recover from + * error conditions except restart everything. In long term we + * need to do something more than just crashing + */ + if (irqstate & RE_JR_ERROR) { + status = in_be32(&jr->jrregs->jr_status); + dev_err(dev, "%s: jr error irqstate: %x, status: %x\n", + __func__, irqstate, status); + + BUG(); + } + + /* Clear interrupt */ + out_be32(&jr->jrregs->jr_interrupt_status, RE_JR_CLEAR_INT); + + tasklet_schedule(&jr->irqtask); + + return IRQ_HANDLED; +} + +static enum dma_status re_jr_tx_status(struct dma_chan *chan, + dma_cookie_t cookie, struct dma_tx_state *txstate) { + struct re_jr *jr = NULL; + dma_cookie_t last_used; + dma_cookie_t last_complete; + + jr = container_of(chan, struct re_jr, chan); + last_used = chan->cookie; + smp_mb(); + last_complete = jr->completed_cookie; + + dma_set_tx_state(txstate, last_complete, last_used, 0); + + return dma_async_is_complete(cookie, last_complete, last_used); } + + +/* Copy descriptor from per jr software queue into hardware job ring */ +void re_jr_issue_pending(struct dma_chan *chan) { + struct re_jr *jr = NULL; + int avail = 0; + + jr = container_of(chan, struct re_jr, chan); + if (timer_pending(&jr->timer)) + del_timer_sync(&jr->timer); + + spin_lock_bh(&jr->inb_lock); + + avail = +RE_JR_INB_SLOT_AVAIL(in_be32(&jr->jrregs->inbring_slot_avail)); + + if (!(avail && jr->pend_count)) + goto out_unlock; + + if (avail > jr->pend_count) + avail = jr->pend_count; + + jr->pend_count -= avail; + jr->inb_count = (jr->inb_count + avail) & (RING_SIZE - 1); + + /* add jobs into job ring */ + out_be32(&jr->jrregs->inbring_add_job, RE_JR_INB_JOB_ADD(avail)); + +out_unlock: + spin_unlock_bh(&jr->inb_lock); +} + +/* Per Job Ring timer handler */ +static void raide_timer_handler(unsigned long data) { + struct dma_chan *chan = NULL; + chan = (struct dma_chan *)data; + + re_jr_issue_pending(chan); + + return; +} + +inline void fill_cfd_frame(struct cmpnd_frame *cf, u8 index, + size_t length, dma_addr_t addr, bool final) { + cf[index].final = final; + cf[index].length = length; + cf[index].address = addr; +} + +static struct fsl_re_dma_async_tx_desc *re_jr_init_desc(struct re_jr *jr, + struct fsl_re_dma_async_tx_desc *desc, void *cf, dma_addr_t paddr) { + desc->jr = jr; + desc->async_tx.tx_submit = re_jr_tx_submit; + dma_async_tx_descriptor_init(&desc->async_tx, &jr->chan); + INIT_LIST_HEAD(&desc->node); + + desc->hwdesc->format = FRAME_FORMAT; + desc->hwdesc->address = paddr; + desc->cf_addr = cf; + + desc->cdb_addr = (void *)(cf + RE_CF_DESC_SIZE); + desc->cdb_paddr = paddr + RE_CF_DESC_SIZE; + + return desc; +} + +static struct fsl_re_dma_async_tx_desc *re_jr_alloc_desc(struct re_jr *jr, + unsigned long flags) +{ + struct fsl_re_dma_async_tx_desc *desc; + + spin_lock_bh(&jr->inb_lock); + + jr->inb_count &= RING_SIZE - 1; + desc = &jr->descs[jr->inb_count]; + + if (desc->state != RE_DESC_EMPTY) { + spin_unlock_bh(&jr->inb_lock); + re_jr_issue_pending(&jr->chan); + return NULL; + } + spin_unlock_bh(&jr->inb_lock); + + desc->state = RE_DESC_ALLOC; + desc->async_tx.flags = flags; + return desc; +} + +static struct dma_async_tx_descriptor *re_jr_prep_genq( + struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, + unsigned int src_cnt, const unsigned char *scf, size_t len, + unsigned long flags) +{ + struct re_jr *jr = NULL; + struct fsl_re_dma_async_tx_desc *desc = NULL; + struct xor_cdb *xor = NULL; + struct cmpnd_frame *cf; + unsigned int i = 0; + unsigned int j = 0; + + if (len > MAX_DATA_LENGTH) { + pr_err("%s: Length greater than %d not supported\n", + __func__, MAX_DATA_LENGTH); + return NULL; + } + jr = container_of(chan, struct re_jr, chan); + desc = re_jr_alloc_desc(jr, flags); + if (!desc || desc < 0) + return NULL; + + desc->dma_len = len; + desc->dest_cnt = 1; + desc->src_cnt = src_cnt; + + desc->cdb_opcode = RE_XOR_OPCODE; + desc->cdb_len = sizeof(struct xor_cdb); + + /* Filling xor CDB */ + xor = desc->cdb_addr; + xor->opcode = RE_XOR_OPCODE; + xor->nrcs = (src_cnt - 1); + xor->blk_size = RE_BLOCK_SIZE; + xor->error_attrib = INTERRUPT_ON_ERROR; + xor->data_depend = DATA_DEPENDENCY; + + if (scf != NULL) { + /* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */ + for (i = 0; i < src_cnt; i++) + xor->gfm[i] = scf[i]; + } else { + /* compute P, that is XOR all srcs */ + for (i = 0; i < src_cnt; i++) + xor->gfm[i] = 1; + } + + /* Filling frame 0 of compound frame descriptor with CDB */ + cf = desc->cf_addr; + fill_cfd_frame(cf, 0, desc->cdb_len, desc->cdb_paddr, 0); + + /* Fill CFD's 1st frame with dest buffer */ + fill_cfd_frame(cf, 1, len, dest, 0); + + /* Fill CFD's rest of the frames with source buffers */ + for (i = 2, j = 0; j < src_cnt; i++, j++) + fill_cfd_frame(cf, i, len, src[j], 0); + + /* Setting the final bit in the last source buffer frame in CFD */ + cf[i - 1].final = 1; + + return &desc->async_tx; +} + +/* + * Prep function for P parity calculation.In RAID Engine terminology, + * XOR calculation is called GenQ calculation done through GenQ command +*/ static struct dma_async_tx_descriptor *re_jr_prep_dma_xor( + struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, + unsigned int src_cnt, size_t len, unsigned long flags) { + /* NULL let genq take all coef as 1 */ + return re_jr_prep_genq(chan, dest, src, src_cnt, NULL, len, flags); } + +/* + * Prep function for P/Q parity calculation.In RAID Engine terminology, + * P/Q calculation is called GenQQ done through GenQQ command */ +static struct dma_async_tx_descriptor *re_jr_prep_pq( + struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src, + unsigned int src_cnt, const unsigned char *scf, size_t len, + unsigned long flags) +{ + struct re_jr *jr = NULL; + struct fsl_re_dma_async_tx_desc *desc = NULL; + struct pq_cdb *pq = NULL; + struct cmpnd_frame *cf; + u8 *p; + int gfmq_len, i, j; + + if (len > MAX_DATA_LENGTH) { + pr_err("%s: Length greater than %d not supported\n", + __func__, MAX_DATA_LENGTH); + return NULL; + } + + /* + * RE requires at least 2 sources, if given only one source, we pass the + * second source same as the first one. + * With only one source, generate P is meaningless, only care Q. + */ + if (src_cnt == 1) { + struct dma_async_tx_descriptor *tx = NULL; + dma_addr_t dma_src[2]; + unsigned char coef[2]; + dma_src[0] = *src; + coef[0] = *scf; + dma_src[1] = *src; + coef[1] = 0; + tx = re_jr_prep_genq(chan, dest[1], dma_src, 2, coef, len, + flags); + if (tx) { + desc = to_fsl_re_dma_desc(tx); + desc->src_cnt = 1; + } + return tx; + } + + /* + * During RAID6 array creation, Linux's MD layer gets P and Q + * calculated separately in two steps. But our RAID Engine has + * the capability to calculate both P and Q with a single command + * Hence to merge well with MD layer, we need to provide a hook + * here and call re_jq_prep_genq() function + */ + + if (flags & DMA_PREP_PQ_DISABLE_P) + return re_jr_prep_genq(chan, dest[1], src, src_cnt, + scf, len, flags); + + jr = container_of(chan, struct re_jr, chan); + desc = re_jr_alloc_desc(jr, flags); + if (!desc || desc < 0) + return NULL; + + desc->dma_len = len; + desc->dest_cnt = 2; + desc->src_cnt = src_cnt; + + desc->cdb_opcode = RE_PQ_OPCODE; + desc->cdb_len = sizeof(struct pq_cdb); + + /* Filling GenQQ CDB */ + pq = desc->cdb_addr; + pq->opcode = RE_PQ_OPCODE; + pq->blk_size = RE_BLOCK_SIZE; + pq->buffer_attrib = BUFFERABLE_OUTPUT; + pq->data_depend = DATA_DEPENDENCY; + pq->nrcs = (src_cnt - 1); + + p = pq->gfm_q1; + /* Init gfm_q1[] */ + for (i = 0; i < src_cnt; i++) + p[i] = 1; + + /* Align gfm[] to 32bit */ + gfmq_len = ((src_cnt+3)/4)*4; + + /* Init gfm_q2[] */ + p += gfmq_len; + for (i = 0; i < src_cnt; i++) + p[i] = scf[i]; + + /* Filling frame 0 of compound frame descriptor with CDB */ + cf = desc->cf_addr; + fill_cfd_frame(cf, 0, desc->cdb_len, desc->cdb_paddr, 0); + + /* Fill CFD's 1st & 2nd frame with dest buffers */ + for (i = 1, j = 0; i < 3; i++, j++) + fill_cfd_frame(cf, i, len, dest[j], 0); + + /* Fill CFD's rest of the frames with source buffers */ + for (i = 3, j = 0; j < src_cnt; i++, j++) + fill_cfd_frame(cf, i, len, src[j], 0); + + /* Setting the final bit in the last source buffer frame in CFD */ + cf[i - 1].final = 1; + + return &desc->async_tx; +} + +/* + * Prep function for memcpy. In RAID Engine, memcpy is done through +MOVE + * command. Logic of this function will need to be modified once +multipage + * support is added in Linux's MD/ASYNC Layer */ static struct +dma_async_tx_descriptor *re_jr_prep_memcpy( + struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, + size_t len, unsigned long flags) +{ + struct re_jr *jr = NULL; + struct fsl_re_dma_async_tx_desc *desc = NULL; + size_t length = 0; + struct cmpnd_frame *cf = NULL; + struct move_cdb *move = NULL; + + jr = container_of(chan, struct re_jr, chan); + + if (len > MAX_DATA_LENGTH) { + pr_err("%s: Length greater than %d not supported\n", + __func__, MAX_DATA_LENGTH); + return NULL; + } + + desc = re_jr_alloc_desc(jr, flags); + if (!desc || desc < 0) + return NULL; + + desc->dma_len = len; + desc->src_cnt = 1; + desc->dest_cnt = 1; + + desc->cdb_opcode = RE_MOVE_OPCODE; + desc->cdb_len = sizeof(struct move_cdb); + + /* Filling move CDB */ + move = desc->cdb_addr; + move->opcode = RE_MOVE_OPCODE; /* Unicast move */ + move->blk_size = RE_BLOCK_SIZE; + move->error_attrib = INTERRUPT_ON_ERROR; + move->data_depend = DATA_DEPENDENCY; + + /* Filling frame 0 of CFD with move CDB */ + cf = desc->cf_addr; + fill_cfd_frame(cf, 0, desc->cdb_len, desc->cdb_paddr, 0); + + length = min_t(size_t, len, MAX_DATA_LENGTH); + + /* Fill CFD's 1st frame with dest buffer */ + fill_cfd_frame(cf, 1, length, dest, 0); + + /* Fill CFD's 2nd frame with src buffer */ + fill_cfd_frame(cf, 2, length, src, 1); + + return &desc->async_tx; +} + +static int re_jr_alloc_chan_resources(struct dma_chan *chan) { + int i; + struct fsl_re_dma_async_tx_desc *desc; + struct re_jr *jr = container_of(chan, struct re_jr, chan); + void *cf = NULL; + dma_addr_t paddr; + + jr->descs = kzalloc(sizeof(*desc) * RING_SIZE, GFP_KERNEL); + if (!jr->descs) { + dev_err(jr->dev, "%s: No memory for sw descriptor ring\n", + __func__); + goto err_free; + } + + cf = dma_pool_alloc(jr->re_dev->desc_pool, GFP_ATOMIC, &paddr); + if (!cf) { + dev_err(jr->dev, "%s: No memory for dma descriptor ring\n", + __func__); + goto err_free; + } + memset(cf, 0, RE_CF_CDB_SIZE * RING_SIZE); + jr->cfs = cf; + jr->phys = paddr; + + for (i = 0; i < RING_SIZE; i++) { + u32 offset = i * RE_CF_CDB_SIZE; + desc = &jr->descs[i]; + desc->hwdesc = &jr->inb_ring_virt_addr[i]; + re_jr_init_desc(jr, desc, cf + offset, paddr + offset); + desc->state = RE_DESC_EMPTY; + } + return 0; + +err_free: + kfree(jr->descs); + return -ENOMEM; +} + +static void re_jr_free_chan_resources(struct dma_chan *chan) { + struct re_jr *jr = container_of(chan, struct re_jr, chan); + dma_pool_free(jr->re_dev->desc_pool, jr->cfs, jr->phys); + kfree(jr->descs); + return; +} + +int re_jr_probe(struct platform_device *ofdev, + struct device_node *np, u8 q, u32 *off) { + struct device *dev = NULL; + struct re_drv_private *repriv = NULL; + struct re_jr *jr = NULL; + struct dma_device *dma_dev = NULL; + u32 *ptr = NULL; + u32 status; + int ret = 0; + struct platform_device *jr_ofdev = NULL; + + dev = &ofdev->dev; + repriv = dev_get_drvdata(dev); + dma_dev = &repriv->dma_dev; + + jr = kzalloc(sizeof(struct re_jr), GFP_KERNEL); + if (!jr) { + dev_err(dev, "%s: No free memory for allocating JR struct\n", + __func__); + return -ENOMEM; + } + + jr_ofdev = of_platform_device_create(np, NULL, dev); + if (jr_ofdev == NULL) { + dev_err(dev, "%s: Not able to create ofdev for jr %d\n", + __func__, q); + ret = -EINVAL; + goto err_free; + } + dev_set_drvdata(&jr_ofdev->dev, jr); + + ptr = (u32 *)of_get_property(np, "reg", NULL); + if (!ptr) { + dev_err(dev, "%s: Reg property not found in JR number %d\n", + __func__, q); + ret = -ENODEV; + goto err_free; + } + + jr->jrregs = (struct jr_config_regs *)((u8 *)repriv->re_regs + + *off + *ptr); + + jr->irq = irq_of_parse_and_map(np, 0); + if (jr->irq == NO_IRQ) { + dev_err(dev, "%s: No IRQ defined for JR %d\n", __func__, q); + ret = -ENODEV; + goto err_free; + } + + tasklet_init(&jr->irqtask, re_jr_dequeue, + (unsigned long)&jr_ofdev->dev); + + ret = request_irq(jr->irq, re_jr_interrupt, 0, "re-jr", &jr_ofdev->dev); + if (ret) { + dev_err(dev, "%s: Unable to register JR interrupt for JR %d\n", + __func__, q); + ret = -EINVAL; + goto err_free; + } + + repriv->re_jrs[q] = jr; + jr->chan.device = dma_dev; + jr->chan.private = jr; + jr->dev = &jr_ofdev->dev; + jr->re_dev = repriv; + jr->pend_count = 0; + INIT_LIST_HEAD(&jr->ack_q); + spin_lock_init(&jr->desc_lock); + spin_lock_init(&jr->inb_lock); + spin_lock_init(&jr->oub_lock); + + init_timer(&jr->timer); + jr->timer.expires = jiffies + 10*HZ; + jr->timer.function = raide_timer_handler; + + list_add_tail(&jr->chan.device_node, &dma_dev->channels); + dma_dev->chancnt++; + + jr->inb_ring_virt_addr = dma_pool_alloc(jr->re_dev->hw_desc_pool, + GFP_ATOMIC, &jr->inb_phys_addr); + + if (!jr->inb_ring_virt_addr) { + dev_err(dev, "%s:No dma memory for inb_ring_virt_addr\n", + __func__); + ret = -ENOMEM; + goto err_free; + } + + jr->oub_ring_virt_addr = dma_pool_alloc(jr->re_dev->hw_desc_pool, + GFP_ATOMIC, &jr->oub_phys_addr); + + if (!jr->oub_ring_virt_addr) { + dev_err(dev, "%s:No dma memory for oub_ring_virt_addr\n", + __func__); + ret = -ENOMEM; + goto err_free; + } + + jr->inb_count = 0; + jr->pend_count = 0; + jr->oub_count = 0; + + status = in_be32(&jr->jrregs->jr_status); + + if (status & RE_JR_PAUSE) { + dev_info(dev, "%s: JR is in paused state...enable it\n", + __func__); + } else { + dev_err(dev, "%s: Error:- JR shud be in paused state\n", + __func__); + ret = -EINVAL; + goto pool_free; + } + + /* Program the Inbound/Outbound ring base addresses and size */ + out_be32(&jr->jrregs->inbring_base_h, + jr->inb_phys_addr & RE_JR_ADDRESS_BIT_MASK); + out_be32(&jr->jrregs->oubring_base_h, + jr->oub_phys_addr & RE_JR_ADDRESS_BIT_MASK); + out_be32(&jr->jrregs->inbring_base_l, + jr->inb_phys_addr >> RE_JR_ADDRESS_BIT_SHIFT); + out_be32(&jr->jrregs->oubring_base_l, + jr->oub_phys_addr >> RE_JR_ADDRESS_BIT_SHIFT); + out_be32(&jr->jrregs->inbring_size, RING_SIZE << RING_SIZE_SHIFT); + out_be32(&jr->jrregs->oubring_size, RING_SIZE << RING_SIZE_SHIFT); + + /* Read LIODN value from u-boot */ + status = in_be32(&jr->jrregs->jr_config_1) & RE_JR_REG_LIODN_MASK; + + /* Program the CFG reg */ + out_be32(&jr->jrregs->jr_config_1, + RE_JR_CFG1_CBSI | RE_JR_CFG1_CBS0 | status); + + /* Enable RE/JR */ + out_be32(&jr->jrregs->jr_command, RE_JR_ENABLE); + + return 0; + +pool_free: + dma_pool_free(jr->re_dev->hw_desc_pool, jr->inb_ring_virt_addr, + jr->inb_phys_addr); +err_free: + kfree(jr); + return ret; +} + +/* Probe function for RAID Engine */ +static int __devinit raide_probe(struct platform_device *ofdev) { + struct re_drv_private *repriv = NULL; + struct device *dev = NULL; + struct device_node *np = NULL; + struct device_node *child = NULL; + u32 *off = NULL; + u8 ridx = 0; + struct dma_device *dma_dev = NULL; + int ret = 0; + + dev_info(&ofdev->dev, "Freescale RAID Engine driver\n"); + + repriv = kzalloc(sizeof(struct re_drv_private), GFP_KERNEL); + if (!repriv) { + dev_err(dev, "%s: No memory for repriv\n", __func__); + return -ENOMEM; + } + + dev = &ofdev->dev; + dev_set_drvdata(dev, repriv); + + /* IOMAP the entire RAID Engine region */ + repriv->re_regs = of_iomap(ofdev->dev.of_node, 0); + if (repriv->re_regs == NULL) { + dev_err(dev, "%s: of_iomap failed\n", __func__); + kfree(repriv); + ret = -ENOMEM; + goto err_free_4; + } + + /* Print the RE version to make sure RE is alive */ + dev_info(dev, "Ver = %x\n", in_be32(&repriv->re_regs->re_version_id)); + + /* Program the RE mode */ + out_be32(&repriv->re_regs->global_config, RE_NON_DPAA_MODE); + dev_info(dev, "%s:RE mode is %x\n", __func__, + in_be32(&repriv->re_regs->global_config)); + + /* Program Galois Field polynomial */ + out_be32(&repriv->re_regs->galois_field_config, RE_GFM_POLY); + dev_info(dev, "%s:Galois Field Polynomial is %x\n", __func__, + in_be32(&repriv->re_regs->galois_field_config)); + + dma_dev = &repriv->dma_dev; + dma_dev->dev = dev; + INIT_LIST_HEAD(&dma_dev->channels); + dma_set_mask(dev, DMA_BIT_MASK(40)); + + dma_dev->device_alloc_chan_resources = re_jr_alloc_chan_resources; + dma_dev->device_tx_status = re_jr_tx_status; + dma_dev->device_issue_pending = re_jr_issue_pending; + + dma_dev->max_xor = MAX_XOR_SRCS; + dma_dev->device_prep_dma_xor = re_jr_prep_dma_xor; + dma_cap_set(DMA_XOR, dma_dev->cap_mask); + + dma_dev->max_pq = MAX_PQ_SRCS; + dma_dev->device_prep_dma_pq = re_jr_prep_pq; + dma_cap_set(DMA_PQ, dma_dev->cap_mask); + + dma_dev->device_prep_dma_memcpy = re_jr_prep_memcpy; + dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); + + dma_dev->device_free_chan_resources = re_jr_free_chan_resources; + + repriv->total_jrs = 0; + + repriv->desc_pool = dma_pool_create("re_dma_desc_pool", dev, + RE_CF_CDB_SIZE * RING_SIZE, + RE_CF_CDB_ALIGN, 0); + + if (!repriv->desc_pool) { + pr_err("%s:No memory for dma desc pool\n", __func__); + ret = -ENOMEM; + goto err_free_3; + } + + repriv->hw_desc_pool = dma_pool_create("re_hw_desc_pool", dev, + sizeof(struct jr_hw_desc) * RING_SIZE, + FRAME_DESC_ALIGNMENT, 0); + if (!repriv->hw_desc_pool) { + pr_err("%s:No memory for hw desc pool\n", __func__); + ret = -ENOMEM; + goto err_free_2; + } + + /* Parse Device tree to find out the total number of JQs present */ + for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") { + off = (u32 *)of_get_property(np, "reg", NULL); + if (!off) { + dev_err(dev, "%s: Reg property not found in JQ node\n", + __func__); + return -ENODEV; + } + + /* Find out the Job Rings present under each JQ */ + for_each_child_of_node(np, child) { + if (of_device_is_compatible(child, + "fsl,raideng-v1.0-job-ring")) { + re_jr_probe(ofdev, child, ridx++, off); + repriv->total_jrs++; + } + } + } + + dma_async_device_register(dma_dev); + return 0; + +err_free_2: + dma_pool_destroy(repriv->desc_pool); +err_free_3: + iounmap(repriv->re_regs); +err_free_4: + kfree(repriv); + + return ret; +} + +static void release_jr(struct re_jr *jr) { + /* Free the memory allocated from DMA pools and destroy them */ + dma_pool_free(jr->re_dev->hw_desc_pool, jr->inb_ring_virt_addr, + jr->inb_phys_addr); + kfree(jr); +} + +static int raide_remove(struct platform_device *ofdev) { + struct re_drv_private *repriv = NULL; + struct device *dev = NULL; + int i; + + dev = &ofdev->dev; + repriv = dev_get_drvdata(dev); + + /* Cleanup JR related memory areas */ + for (i = 0; i < repriv->total_jrs; i++) + release_jr(repriv->re_jrs[i]); + + dma_pool_destroy(repriv->hw_desc_pool); + dma_pool_destroy(repriv->desc_pool); + + /* Unregister the driver */ + dma_async_device_unregister(&repriv->dma_dev); + + /* Unmap the RAID Engine region */ + iounmap(repriv->re_regs); + + kfree(repriv); + + return 0; +} + +static struct of_device_id raide_ids[] = { + { .compatible = "fsl,raideng-v1.0", }, + {} +}; + +static struct platform_driver raide_driver = { + .driver = { + .name = "fsl-raideng", + .owner = THIS_MODULE, + .of_match_table = raide_ids, + }, + .probe = raide_probe, + .remove = raide_remove, +}; + +static __init int raide_init(void) +{ + int ret = 0; + + ret = platform_driver_register(&raide_driver); + if (ret) + pr_err("fsl-raid: Failed to register platform driver\n"); + + return ret; +} + +static void __exit raide_exit(void) +{ + platform_driver_unregister(&raide_driver); +} + +subsys_initcall(raide_init); +module_exit(raide_exit); + +MODULE_AUTHOR("Harninder Rai <harninder....@freescale.com>"); +MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Freescale RAID Engine +Device Driver"); diff --git a/drivers/dma/fsl_raid.h b/drivers/dma/fsl_raid.h new file mode 100644 index 0000000..3cb8454 --- /dev/null +++ b/drivers/dma/fsl_raid.h @@ -0,0 +1,317 @@ +/* + * drivers/dma/fsl_raid.h + * + * Freescale RAID Engine device driver + * + * Author: + * Harninder Rai <harninder....@freescale.com> + * Naveen Burmi <naveenbu...@freescale.com> + * + * Copyright (c) 2010-2012 Freescale Semiconductor, Inc. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * * Neither the name of Freescale Semiconductor nor the + * names of its contributors may be used to endorse or promote products + * derived from this software without specific prior written permission. + * + * ALTERNATIVELY, this software may be distributed under the terms of +the + * GNU General Public License ("GPL") as published by the Free Software + * Foundation, either version 2 of that License or (at your option) any + * later version. + * + * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND +ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE + * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR +ANY + * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND + * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE +USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + */ + +#define RE_DPAA_MODE (1 << 30) +#define RE_NON_DPAA_MODE (1 << 31) +#define RE_GFM_POLY (0x1d000000) +#define RE_JR_INB_JOB_ADD(x) ((x) << 16) +#define RE_JR_OUB_JOB_REMOVE(x) ((x) << 16) +#define RE_JR_CFG1_CBSI 0x08000000 +#define RE_JR_CFG1_CBS0 0x00080000 +#define RE_JR_OUB_SLOT_FULL_SHIFT 8 +#define RE_JR_OUB_SLOT_FULL(x) ((x) >> RE_JR_OUB_SLOT_FULL_SHIFT) +#define RE_JR_INB_SLOT_AVAIL_SHIFT 8 +#define RE_JR_INB_SLOT_AVAIL(x) ((x) >> RE_JR_INB_SLOT_AVAIL_SHIFT) +#define RE_PQ_OPCODE 0x1B +#define RE_XOR_OPCODE 0x1A +#define RE_MOVE_OPCODE 0x8 +#define FRAME_DESC_ALIGNMENT 16 +#define RE_BLOCK_SIZE 0x3 /* 4096 bytes */ +#define CACHEABLE_INPUT_OUTPUT 0x0 +#define BUFFERABLE_OUTPUT 0x0 +#define INTERRUPT_ON_ERROR 0x1 +#define DATA_DEPENDENCY 0x1 +#define ENABLE_DPI 0x0 +#define RING_SIZE 0x1000 +#define RING_SIZE_SHIFT 8 +#define RE_JR_ADDRESS_BIT_SHIFT 4 +#define RE_JR_ADDRESS_BIT_MASK ((1 << RE_JR_ADDRESS_BIT_SHIFT) - 1) +#define RE_JR_ERROR 0x40000000 +#define RE_JR_INTERRUPT 0x80000000 +#define RE_JR_CLEAR_INT 0x80000000 +#define RE_JR_PAUSE 0x80000000 +#define RE_JR_ENABLE 0x80000000 + +#define RE_JR_REG_LIODN_MASK 0x00000fff +#define RE_CF_CDB_ALIGN 64 +/* + * the largest cf block is 19*sizeof(struct cmpnd_frame), which is 304 bytes. + * here 19 = 1(cdb)+2(dest)+16(src), align to 64bytes, that is 320 bytes. + * the largest cdb block: struct pq_cdb which is 180 bytes, adding to +cf block + * 320+180=500, align to 64bytes, that is 512 bytes. + */ +#define RE_CF_DESC_SIZE 320 +#define RE_CF_CDB_SIZE 512 + +struct re_ctrl { + /* General Configuration Registers */ + __be32 global_config; /* Global Configuration Register */ + u8 rsvd1[4]; + __be32 galois_field_config; /* Galois Field Configuration Register */ + u8 rsvd2[4]; + __be32 jq_wrr_config; /* WRR Configuration register */ + u8 rsvd3[4]; + __be32 crc_config; /* CRC Configuration register */ + u8 rsvd4[228]; + __be32 system_reset; /* System Reset Register */ + u8 rsvd5[252]; + __be32 global_status; /* Global Status Register */ + u8 rsvd6[832]; + __be32 re_liodn_base; /* LIODN Base Register */ + u8 rsvd7[1712]; + __be32 re_version_id; /* Version ID register of RE */ + __be32 re_version_id_2; /* Version ID 2 register of RE */ + u8 rsvd8[512]; + __be32 host_config; /* Host I/F Configuration Register */ +}; + +struct jr_config_regs { + /* Registers for JR interface */ + __be32 jr_config_0; /* Job Queue Configuration 0 Register */ + __be32 jr_config_1; /* Job Queue Configuration 1 Register */ + __be32 jr_interrupt_status; /* Job Queue Interrupt Status Register */ + u8 rsvd1[4]; + __be32 jr_command; /* Job Queue Command Register */ + u8 rsvd2[4]; + __be32 jr_status; /* Job Queue Status Register */ + u8 rsvd3[228]; + + /* Input Ring */ + __be32 inbring_base_h; /* Inbound Ring Base Address Register - High */ + __be32 inbring_base_l; /* Inbound Ring Base Address Register - Low */ + __be32 inbring_size; /* Inbound Ring Size Register */ + u8 rsvd4[4]; + __be32 inbring_slot_avail; /* Inbound Ring Slot Available Register */ + u8 rsvd5[4]; + __be32 inbring_add_job; /* Inbound Ring Add Job Register */ + u8 rsvd6[4]; + __be32 inbring_cnsmr_indx; /* Inbound Ring Consumer Index Register */ + u8 rsvd7[220]; + + /* Output Ring */ + __be32 oubring_base_h; /* Outbound Ring Base Address Register - High */ + __be32 oubring_base_l; /* Outbound Ring Base Address Register - Low */ + __be32 oubring_size; /* Outbound Ring Size Register */ + u8 rsvd8[4]; + __be32 oubring_job_rmvd; /* Outbound Ring Job Removed Register */ + u8 rsvd9[4]; + __be32 oubring_slot_full; /* Outbound Ring Slot Full Register */ + u8 rsvd10[4]; + __be32 oubring_prdcr_indx; /* Outbound Ring Producer Index */ }; + +/* + * Command Descriptor Block (CDB) for unicast move command. + * In RAID Engine terms, memcpy is done through move command */ struct +move_cdb { + u32 opcode:5; + u32 rsvd1:11; + u32 blk_size:2; + u32 cache_attrib:2; + u32 buffer_attrib:1; + u32 error_attrib:1; + u32 rsvd2:6; + u32 data_depend:1; + u32 dpi:1; + u32 rsvd3:2; +} __packed; + +/* Data protection/integrity related fields */ struct dpi_related { + u32 apps_mthd:2; + u32 ref_mthd:2; + u32 guard_mthd:2; + u32 dpi_attr:2; + u32 rsvd1:8; + u32 meta_tag:16; + u32 ref_tag:32; +} __packed; + +/* + * CDB for GenQ command. In RAID Engine terminology, XOR is + * done through this command + */ +struct xor_cdb { + u32 opcode:5; + u32 rsvd1:11; + u32 blk_size:2; + u32 cache_attrib:2; + u32 buffer_attrib:1; + u32 error_attrib:1; + u32 nrcs:4; + u32 rsvd2:2; + u32 data_depend:1; + u32 dpi:1; + u32 rsvd3:2; + u8 gfm[16]; + struct dpi_related dpi_dest_spec; + struct dpi_related dpi_src_spec[16]; +} __packed; + +/* CDB for no-op command */ +struct noop_cdb { + u32 opcode:5; + u32 rsvd1:23; + u32 dependency:1; + u32 rsvd2:3; +} __packed; + +/* + * CDB for GenQQ command. In RAID Engine terminology, P/Q is + * done through this command + */ +struct pq_cdb { + u32 opcode:5; + u32 rsvd1:1; + u32 excl_enable:2; + u32 excl_q1:4; + u32 excl_q2:4; + u32 blk_size:2; + u32 cache_attrib:2; + u32 buffer_attrib:1; + u32 error_attrib:1; + u32 nrcs:4; + u32 rsvd2:2; + u32 data_depend:1; + u32 dpi:1; + u32 rsvd3:2; + u8 gfm_q1[16]; + u8 gfm_q2[16]; + struct dpi_related dpi_dest_spec[2]; + struct dpi_related dpi_src_spec[16]; +} __packed; + +/* Compound frame */ +struct cmpnd_frame { + u64 rsvd1:24; + u64 address:40; + u32 extension:1; + u32 final:1; + u32 rsvd3:10; + u32 length:20; + u32 rsvd4:8; + u32 bpid:8; + u32 rsvd5:3; + u32 offset:13; +} __packed; + +/* Frame descriptor */ +struct jr_hw_desc { + u64 debug:2; + u64 liodn_off:6; + u64 bpid:8; + u64 eliodn_off:4; + u64 rsvd1:4; + u64 address:40; + u64 format:3; + u64 rsvd2:29; + u64 status:32; +} __packed; + +#define MAX_RE_JRS 4 + +/* Raid Engine device private data */ +struct re_drv_private { + u8 total_jrs; + struct dma_device dma_dev; + struct re_ctrl *re_regs; + struct re_jr *re_jrs[MAX_RE_JRS]; + struct dma_pool *desc_pool; + struct dma_pool *hw_desc_pool; +}; + +/* Per job ring data structure */ +struct re_jr { + dma_cookie_t completed_cookie; + spinlock_t desc_lock; + struct list_head ack_q; + struct device *dev; + struct re_drv_private *re_dev; + struct dma_chan chan; + struct jr_config_regs *jrregs; + int irq; + struct tasklet_struct irqtask; + + /* hw descriptor ring for inbound queue*/ + dma_addr_t inb_phys_addr; + struct jr_hw_desc *inb_ring_virt_addr; + u32 inb_count; + u32 pend_count; + spinlock_t inb_lock; + + /* hw descriptor ring for outbound queue */ + dma_addr_t oub_phys_addr; + struct jr_hw_desc *oub_ring_virt_addr; + u32 oub_count; + spinlock_t oub_lock; + + struct fsl_re_dma_async_tx_desc *descs; /* sw descriptor ring */ + void *cfs; /* dma descriptor ring */ + dma_addr_t phys; /* phys addr for dma descriptor ring */ + + struct timer_list timer; +}; + +enum desc_state { + RE_DESC_EMPTY, + RE_DESC_ALLOC, +}; + +/* Async transaction descriptor */ +struct fsl_re_dma_async_tx_desc { + struct dma_async_tx_descriptor async_tx; + struct list_head node; + struct list_head tx_list; + struct jr_hw_desc *hwdesc; + struct re_jr *jr; + + void *cf_addr; + int dma_len; + u8 dest_cnt; + u8 src_cnt; + + u16 cdb_opcode; + void *cdb_addr; + dma_addr_t cdb_paddr; + int cdb_len; + + enum desc_state state; +}; -- 1.7.9.5