On Sat, Mar 28, 2015 at 09:53:21AM +0100, Michael Kerrisk (man-pages) wrote: > So, please take a look at the page below. At this point, > I would most especially appreciate help with the FIXMEs.
For people who cannot read that troff gibberish (me).. --- FUTEX(2) Linux Programmer's Manual FUTEX(2) NAME futex - fast user-space locking SYNOPSIS #include <linux/futex.h> #include <sys/time.h> int futex(int *uaddr, int futex_op, int val, const struct timespec *timeout, /* or: u32 val2 */ int *uaddr2, int val3); Note: There is no glibc wrapper for this system call; see NOTES. DESCRIPTION The futex() system call provides a method for waiting until a certain condition becomes true. It is typically used as a blocking construct in the context of shared-memory synchronization: The program implements the majority of the synchronization in user space, and uses one of operations of the system call when it is likely that it has to block for a longer time until the condition becomes true. The program uses another operation of the system call to wake anyone waiting for a par‐ ticular condition. The condition is represented by the futex word, which is an address in memory supplied to the futex() system call, and the value at this mem‐ ory location. (While the virtual addresses for the same memory in sep‐ arate processes may not be equal, the kernel maps them internally so that the same memory mapped in different locations will correspond for futex() calls.) When executing a futex operation that requests to block a thread, the kernel will only block if the futex word has the value that the calling thread supplied as expected value. The load from the futex word, the comparison with the expected value, and the actual blocking will happen atomically and totally ordered with respect to concurrently executing futex operations on the same futex word, such as operations that wake threads blocked on this futex word. Thus, the futex word is used to connect the synchronization in user spac with the implementation of blocking by the kernel; similar to an atomic compare-and-exchange oper‐ ation that potentially changes shared memory, blocking via a futex is an atomic compare-and-block operation. See NOTES for a detailed speci‐ fication of the synchronization semantics. One example use of futexes is implementing locks. The state of the lock (i.e., acquired or not acquired) can be represented as an atomi‐ cally accessed flag in shared memory. In the uncontended case, a thread can access or modify the lock state with atomic instructions, for example atomically changing it from not acquired to acquired using an atomic compare-and-exchange instruction. If a thread cannot acquire a lock because it is already acquired by another thread, it can request to block if and only the lock is still acquired by using the lock's flag as futex word and expecting a value that represents the acquired state. When releasing the lock, a thread has to first reset the lock state to not acquired and then execute the futex operation that wakes one thread blocked on the futex word that is the lock's flag (this can be be further optimized to avoid unnecessary wake-ups). See futex(7) for more detail on how to use futexes. Besides the basic wait and wake-up futex functionality, there are fur‐ ther futex operations aimed at supporting more complex use cases. Also note that no explicit initialization or destruction are necessary to use futexes; the kernel maintains a futex (i.e., the kernel-internal implementation artifact) only while operations such as FUTEX_WAIT, described below, are being performed on a particular futex word. Arguments The uaddr argument points to the futex word. On all platforms, futexes are four-byte integers that must be aligned on a four-byte boundary. The operation to perform on the futex is specified in the futex_op argument; val is a value whose meaning and purpose depends on futex_op. The remaining arguments (timeout, uaddr2, and val3) are required only for certain of the futex operations described below. Where one of these arguments is not required, it is ignored. For several blocking operations, the timeout argument is a pointer to a timespec structure that specifies a timeout for the operation. How‐ ever, notwithstanding the prototype shown above, for some operations, this argument is instead a four-byte integer whose meaning is deter‐ mined by the operation. For these operations, the kernel casts the timeout value to u32, and in the remainder of this page, this argument is referred to as val2 when interpreted in this fashion. Where it is required, the uaddr2 argument is a pointer to a second futex word that is employed by the operation. The interpretation of the final integer argument, val3, depends on the operation. Futex operations The futex_op argument consists of two parts: a command that specifies the operation to be performed, bit-wise ORed with zero or or more options that modify the behaviour of the operation. The options that may be included in futex_op are as follows: FUTEX_PRIVATE_FLAG (since Linux 2.6.22) This option bit can be employed with all futex operations. It tells the kernel that the futex is process-private and not shared with another process (i.e., it is only being used for synchronization between threads of the same process). This allows the kernel to choose the fast path for validating the user-space address and avoids expensive VMA lookups, taking ref‐ erence counts on file backing store, and so on. As a convenience, <linux/futex.h> defines a set of constants with the suffix _PRIVATE that are equivalents of all of the operations listed below, but with the FUTEX_PRIVATE_FLAG ORed into the constant value. Thus, there are FUTEX_WAIT_PRIVATE, FUTEX_WAKE_PRIVATE, and so on. FUTEX_CLOCK_REALTIME (since Linux 2.6.28) This option bit can be employed only with the FUTEX_WAIT_BITSET and FUTEX_WAIT_REQUEUE_PI operations. If this option is set, the kernel treats timeout as an absolute time based on CLOCK_REALTIME. If this option is not set, the kernel treats timeout as relative time, measured against the CLOCK_MONOTONIC clock. The operation specified in futex_op is one of the following: FUTEX_WAIT (since Linux 2.6.0) This operation tests that the value at the futex word pointed to by the address uaddr still contains the expected value val, and if so, then sleeps awaiting FUTEX_WAKE on the futex word. The load of the value of the futex word is an atomic memory access (i.e., using atomic machine instructions of the respective architecture). This load, the comparison with the expected value, and starting to sleep are performed atomically and totally ordered with respect to other futex operations on the same futex word. If the thread starts to sleep, it is consid‐ ered a waiter on this futex word. If the futex value does not match val, then the call fails immediately with the error EAGAIN. The purpose of the comparison with the expected value is to pre‐ vent lost wake-ups: If another thread changed the value of the futex word after the calling thread decided to block based on the prior value, and if the other thread executed a FUTEX_WAKE operation (or similar wake-up) after the value change and before this FUTEX_WAIT operation, then the latter will observe the value change and will not start to sleep. If the timeout argument is non-NULL, its contents specify a rel‐ ative timeout for the wait, measured according to the CLOCK_MONOTONIC clock. (This interval will be rounded up to the system clock granularity, and kernel scheduling delays mean that the blocking interval may overrun by a small amount.) If time‐ out is NULL, the call blocks indefinitely. The arguments uaddr2 and val3 are ignored. FUTEX_WAKE (since Linux 2.6.0) This operation wakes at most val of the waiters that are waiting (e.g., inside FUTEX_WAIT) on the futex word at the address uaddr. Most commonly, val is specified as either 1 (wake up a single waiter) or INT_MAX (wake up all waiters). No guarantee is provided about which waiters are awoken (e.g., a waiter with a higher scheduling priority is not guaranteed to be awoken in preference to a waiter with a lower priority). The arguments timeout, uaddr2, and val3 are ignored. FUTEX_FD (from Linux 2.6.0 up to and including Linux 2.6.25) This operation creates a file descriptor that is associated with the futex at uaddr. The caller must close the returned file descriptor after use. When another process or thread performs a FUTEX_WAKE on the futex word, the file descriptor indicates as being readable with select(2), poll(2), and epoll(7) The file descriptor can be used to obtain asynchronous notifica‐ tions: if val is nonzero, then when another process or thread executes a FUTEX_WAKE, the caller will receive the signal number that was passed in val. The arguments timeout, uaddr2 and val3 are ignored. To prevent race conditions, the caller should test if the futex has been upped after FUTEX_FD returns. Because it was inherently racy, FUTEX_FD has been removed from Linux 2.6.26 onward. FUTEX_REQUEUE (since Linux 2.6.0) Avoid using this operation. It is broken for its intended pur‐ pose. Use FUTEX_CMP_REQUEUE instead. This operation performs the same task as FUTEX_CMP_REQUEUE, except that no check is made using the value in val3. (The argument val3 is ignored.) FUTEX_CMP_REQUEUE (since Linux 2.6.7) This operation first checks whether the location uaddr still contains the value val3. If not, the operation fails with the error EAGAIN. Otherwise, the operation wakes up a maximum of val waiters that are waiting on the futex at uaddr. If there are more than val waiters, then the remaining waiters are removed from the wait queue of the source futex at uaddr and added to the wait queue of the target futex at uaddr2. The val2 argument specifies an upper limit on the number of waiters that are requeued to the futex at uaddr2. The load from uaddr is an atomic memory access (i.e., using atomic machine instructions of the respective architecture). This load, the comparison with val3, and the requeueing of any waiters are performed atomically and totally ordered with respect to other operations on the same futex word. This operation was added as a replacement for the earlier FUTEX_REQUEUE. The difference is that the check of the value at uaddr can be used to ensure that requeueing only happens under certain conditions. Both operations can be used to avoid a "thundering herd" effect when FUTEX_WAKE is used and all of the waiters that are woken need to acquire another futex. Typical values to specify for val are 0 or or 1. (Specifying INT_MAX is not useful, because it would make the FUTEX_CMP_REQUEUE operation equivalent to FUTEX_WAKE.) The limit value specified via val2 is typically either 1 or INT_MAX. (Specifying the argument as 0 is not useful, because it would make the FUTEX_CMP_REQUEUE operation equivalent to FUTEX_WAIT.) FUTEX_WAKE_OP (since Linux 2.6.14) This operation was added to support some user-space use cases where more than one futex must be handled at the same time. The most notable example is the implementation of pthread_cond_sig‐ nal(3), which requires operations on two futexes, the one used to implement the mutex and the one used in the implementation of the wait queue associated with the condition variable. FUTEX_WAKE_OP allows such cases to be implemented without lead‐ ing to high rates of contention and context switching. The FUTEX_WAIT_OP operation is equivalent to execute the follow‐ ing code atomically and totally ordered with respect to other futex operations on any of the two supplied futex words: int oldval = *(int *) uaddr2; *(int *) uaddr2 = oldval op oparg; futex(uaddr, FUTEX_WAKE, val, 0, 0, 0); if (oldval cmp cmparg) futex(uaddr2, FUTEX_WAKE, val2, 0, 0, 0); In other words, FUTEX_WAIT_OP does the following: * saves the original value of the futex word at uaddr2 and per‐ forms an operation to modify the value of the futex at uaddr2; this is an atomic read-modify-write memory access (i.e., using atomic machine instructions of the respective architecture) * wakes up a maximum of val waiters on the futex for the futex word at uaddr; and * dependent on the results of a test of the original value of the futex word at uaddr2, wakes up a maximum of val2 waiters on the futex for the futex word at uaddr2. The operation and comparison that are to be performed are encoded in the bits of the argument val3. Pictorially, the encoding is: +---+---+-----------+-----------+ |op |cmp| oparg | cmparg | +---+---+-----------+-----------+ 4 4 12 12 <== # of bits Expressed in code, the encoding is: #define FUTEX_OP(op, oparg, cmp, cmparg) \ (((op & 0xf) << 28) | \ ((cmp & 0xf) << 24) | \ ((oparg & 0xfff) << 12) | \ (cmparg & 0xfff)) In the above, op and cmp are each one of the codes listed below. The oparg and cmparg components are literal numeric values, except as noted below. The op component has one of the following values: FUTEX_OP_SET 0 /* uaddr2 = oparg; */ FUTEX_OP_ADD 1 /* uaddr2 += oparg; */ FUTEX_OP_OR 2 /* uaddr2 |= oparg; */ FUTEX_OP_ANDN 3 /* uaddr2 &= ~oparg; */ FUTEX_OP_XOR 4 /* uaddr2 ^= oparg; */ In addition, bit-wise ORing the following value into op causes (1 << oparg) to be used as the operand: FUTEX_OP_ARG_SHIFT 8 /* Use (1 << oparg) as operand */ The cmp field is one of the following: FUTEX_OP_CMP_EQ 0 /* if (oldval == cmparg) wake */ FUTEX_OP_CMP_NE 1 /* if (oldval != cmparg) wake */ FUTEX_OP_CMP_LT 2 /* if (oldval < cmparg) wake */ FUTEX_OP_CMP_LE 3 /* if (oldval <= cmparg) wake */ FUTEX_OP_CMP_GT 4 /* if (oldval > cmparg) wake */ FUTEX_OP_CMP_GE 5 /* if (oldval >= cmparg) wake */ The return value of FUTEX_WAKE_OP is the sum of the number of waiters woken on the futex uaddr plus the number of waiters woken on the futex uaddr2. FUTEX_WAIT_BITSET (since Linux 2.6.25) This operation is like FUTEX_WAIT except that val3 is used to provide a 32-bit bitset to the kernel. This bitset is stored in the kernel-internal state of the waiter. See the description of FUTEX_WAKE_BITSET for further details. The FUTEX_WAIT_BITSET operation also interprets the timeout argument differently from FUTEX_WAIT. See the discussion of FUTEX_CLOCK_REALTIME, above. The uaddr2 argument is ignored. FUTEX_WAKE_BITSET (since Linux 2.6.25) This operation is the same as FUTEX_WAKE except that the val3 argument is used to provide a 32-bit bitset to the kernel. This bitset is used to select which waiters should be woken up. The selection is done by a bit-wise AND of the "wake" bitset (i.e., the value in val3) and the bitset which is stored in the kernel- internal state of the waiter (the "wait" bitset that is set using FUTEX_WAIT_BITSET). All of the waiters for which the result of the AND is nonzero are woken up; the remaining waiters are left sleeping. The effect of FUTEX_WAIT_BITSET and FUTEX_WAKE_BITSET is to allow selective wake-ups among multiple waiters that are blocked on the same futex. Note, however, that using this bitset multi‐ plexing feature on a futex is less efficient than simply using multiple futexes, because employing bitset multiplexing requires the kernel to check all waiters on a futex, including those that are not interested in being woken up (i.e., they do not have the relevant bit set in their "wait" bitset). The uaddr2 and timeout arguments are ignored. The FUTEX_WAIT and FUTEX_WAKE operations correspond to FUTEX_WAIT_BITSET and FUTEX_WAKE_BITSET operations where the bitsets are all ones. Priority-inheritance futexes Linux supports priority-inheritance (PI) futexes in order to handle priority-inversion problems that can be encountered with normal futex locks. Priority inversion is the problem that occurs when a high-pri‐ ority task is blocked waiting to acquire a lock held by a low-priority task, while tasks at an intermediate priority continuously preempt the low-priority task from the CPU. Consequently, the low-priority task makes no progress toward releasing the lock, and the high-priority task remains blocked. Priority inheritance is a mechanism for dealing with the priority- inversion problem. With this mechanism, when a high-priority task becomes blocked by a lock held by a low-priority task, the latter's priority is temporarily raised to that of the former, so that it is not preempted by any intermediate level tasks, and can thus make progress toward releasing the lock. To be effective, priority inheritance must be transitive, meaning that if a high-priority task blocks on a lock held by a lower-priority task that is itself blocked by lock held by another intermediate-priority task (and so on, for chains of arbitrary length), then both of those task (or more generally, all of the tasks in a lock chain) have their priorities raised to be the same as the high-priority task. From a user-space perspective, what makes a futex PI-aware is a policy agreement between user space and the kernel about the value of the futex word (described in a moment), coupled with the use of the PI futex operations described below (in particular, FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, and FUTEX_CMP_REQUEUE_PI). The PI futex operations described below differ from the other futex operations in that they impose policy on the use of the value of the futex word: * If the lock is not acquired, the futex word's value shall be 0. * If the lock is acquired, the futex word's value shall be the thread ID (TID; see gettid(2)) of the owning thread. * If the lock is owned and there are threads contending for the lock, then the FUTEX_WAITERS bit shall be set in the futex word's value; in other words, this value is: FUTEX_WAITERS | TID Note that a PI futex word never just has the value FUTEX_WAITERS, which is a permissible state for non-PI futexes. With this policy in place, a user-space application can acquire a not- acquired lock or release a lock that no other threads try to acquire using atomic instructions executed in user space (e.g., a compare-and- swap operation such as cmpxchg on the x86 architecture). Acquiring a lock simply consists of using compare-and-swap to atomically set the futex word's value to the caller's TID if its previous value was 0. Releasing a lock requires using compare-and-swap to set the futex word's value to 0 if the previous value was the expected TID. If a futex is already acquired (i.e., has a nonzero value), waiters must employ the FUTEX_LOCK_PI operation to acquire the lock. If other threads are waiting for the lock, then the FUTEX_WAITERS bit is set in the futex value; in this case, the lock owner must employ the FUTEX_UNLOCK_PI operation to release the lock. In the cases where callers are forced into the kernel (i.e., required to perform a futex() operation), they then deal directly with a so- called RT-mutex, a kernel locking mechanism which implements the required priority-inheritance semantics. After the RT-mutex is acquired, the futex value is updated accordingly, before the calling thread returns to user space. It is important to note that the kernel will update the futex word's value prior to returning to user space. Unlike the other futex opera‐ tions described above, the PI futex operations are designed for the implementation of very specific IPC mechanisms. PI futexes are operated on by specifying one of the following values in futex_op: FUTEX_LOCK_PI (since Linux 2.6.18) This operation is used after after an attempt to acquire the lock via an atomic user-space instruction failed because the futex word has a nonzero value—specifically, because it con‐ tained the namespace-specific TID of the lock owner. The operation checks the value of the futex word at the address uaddr. If the value is 0, then the kernel tries to atomically set the futex value to the caller's TID. If that fails, or the futex word's value is nonzero, the kernel atomically sets the FUTEX_WAITERS bit, which signals the futex owner that it cannot unlock the futex in user space atomically by setting the futex value to 0. After that, the kernel tries to find the thread which is associated with the owner TID, creates or reuses kernel state on behalf of the owner and attaches the waiter to it. The enqueueing of the waiter is in descending priority order if more than one waiter exists. The owner inherits either the priority or the bandwidth of the waiter. This inheritance follows the lock chain in the case of nested locking and performs deadlock detection. The timeout argument provides a timeout for the lock attempt. It is interpreted as an absolute time, measured against the CLOCK_REALTIME clock. If timeout is NULL, the operation will block indefinitely. The uaddr2, val, and val3 arguments are ignored. FUTEX_TRYLOCK_PI (since Linux 2.6.18) This operation tries to acquire the futex at uaddr. It deals with the situation where the TID value at uaddr is 0, but the FUTEX_WAITERS bit is set. User space cannot handle this condi‐ tion in a race-free manner The uaddr2, val, timeout, and val3 arguments are ignored. FUTEX_UNLOCK_PI (since Linux 2.6.18) This operation wakes the top priority waiter that is waiting in FUTEX_LOCK_PI on the futex address provided by the uaddr argu‐ ment. This is called when the user space value at uaddr cannot be changed atomically from a TID (of the owner) to 0. The uaddr2, val, timeout, and val3 arguments are ignored. FUTEX_CMP_REQUEUE_PI (since Linux 2.6.31) This operation is a PI-aware variant of FUTEX_CMP_REQUEUE. It requeues waiters that are blocked via FUTEX_WAIT_REQUEUE_PI on uaddr from a non-PI source futex (uaddr) to a PI target futex (uaddr2). As with FUTEX_CMP_REQUEUE, this operation wakes up a maximum of val waiters that are waiting on the futex at uaddr. However, for FUTEX_CMP_REQUEUE_PI, val is required to be 1 (since the main point is to avoid a thundering herd). The remaining wait‐ ers are removed from the wait queue of the source futex at uaddr and added to the wait queue of the target futex at uaddr2. The val2 and val3 arguments serve the same purposes as for FUTEX_CMP_REQUEUE. FUTEX_WAIT_REQUEUE_PI (since Linux 2.6.31) Wait operation to wait on a non-PI futex at uaddr and poten‐ tially be requeued onto a PI futex at uaddr2. The wait opera‐ tion on uaddr is the same as FUTEX_WAIT. The waiter can be removed from the wait on uaddr via FUTEX_WAKE without requeueing on uaddr2. If timeout is not NULL, it specifies a timeout for the wait operation; this timeout is interpreted as outlined above in the description of the FUTEX_CLOCK_REALTIME option. If timeout is NULL, the operation can block indefinitely. The val3 argument is ignored. The FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI were added to support a fairly specific use case: support for priority-inheri‐ tance-aware POSIX threads condition variables. The idea is that these operations should always be paired, in order to ensure that user space and the kernel remain in sync. Thus, in the FUTEX_WAIT_REQUEUE_PI operation, the user-space application pre- specifies the target of the requeue that takes place in the FUTEX_CMP_REQUEUE_PI operation. RETURN VALUE In the event of an error, all operations return -1 and set errno to indicate the cause of the error. The return value on success depends on the operation, as described in the following list: FUTEX_WAIT Returns 0 if the caller was woken up. Note that a wake-up can also be caused by common futex usage patterns in unrelated code that happened to have previously used the futex word's memory location (e.g., typical futex-based implementations of Pthreads mutexes can cause this under some conditions). Therefore, call‐ ers should always conservatively assume that a return value of 0 can mean a spurious wake-up, and use the futex word's value (i.e., the user space synchronization scheme) to decide whether to continue to block or not. FUTEX_WAKE Returns the number of waiters that were woken up. FUTEX_FD Returns the new file descriptor associated with the futex. FUTEX_REQUEUE Returns the number of waiters that were woken up. FUTEX_CMP_REQUEUE Returns the total number of waiters that were woken up or requeued to the futex for the futex word at uaddr2. If this value is greater than val, then difference is the number of waiters requeued to the futex for the futex word at uaddr2. FUTEX_WAKE_OP Returns the total number of waiters that were woken up. This is the sum of the woken waiters on the two futexes for the futex words at uaddr and uaddr2. FUTEX_WAIT_BITSET Returns 0 if the caller was woken up. See FUTEX_WAIT for how to interpret this correctly in practice. FUTEX_WAKE_BITSET Returns the number of waiters that were woken up. FUTEX_LOCK_PI Returns 0 if the futex was successfully locked. FUTEX_TRYLOCK_PI Returns 0 if the futex was successfully locked. FUTEX_UNLOCK_PI Returns 0 if the futex was successfully unlocked. FUTEX_CMP_REQUEUE_PI Returns the total number of waiters that were woken up or requeued to the futex for the futex word at uaddr2. If this value is greater than val, then difference is the number of waiters requeued to the futex for the futex word at uaddr2. FUTEX_WAIT_REQUEUE_PI Returns 0 if the caller was successfully requeued to the futex for the futex word at uaddr2. ERRORS EACCES No read access to the memory of a futex word. EAGAIN (FUTEX_WAIT, FUTEX_WAIT_BITSET, FUTEX_WAIT_REQUEUE_PI) The value pointed to by uaddr was not equal to the expected value val at the time of the call. Note: on Linux, the symbolic names EAGAIN and EWOULDBLOCK (both of which appear in different parts of the kernel futex code) have the same value. EAGAIN (FUTEX_CMP_REQUEUE, FUTEX_CMP_REQUEUE_PI) The value pointed to by uaddr is not equal to the expected value val3. (This proba‐ bly indicates a race; use the safe FUTEX_WAKE now.) EAGAIN (FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, FUTEX_CMP_REQUEUE_PI) The futex owner thread ID of uaddr (for FUTEX_CMP_REQUEUE_PI: uaddr2) is about to exit, but has not yet handled the internal state cleanup. Try again. EDEADLK (FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, FUTEX_CMP_REQUEUE_PI) The futex word at uaddr is already locked by the caller. EDEADLK (FUTEX_CMP_REQUEUE_PI) While requeueing a waiter to the PI futex for the futex word at uaddr2, the kernel detected a deadlock. EFAULT A required pointer argument (i.e., uaddr, uaddr2, or timeout) did not point to a valid user-space address. EINTR A FUTEX_WAIT or FUTEX_WAIT_BITSET operation was interrupted by a signal (see signal(7)). In kernels before Linux 2.6.22, this error could also be returned for on a spurious wakeup; since Linux 2.6.22, this no longer happens. EINVAL The operation in futex_op is one of those that employs a time‐ out, but the supplied timeout argument was invalid (tv_sec was less than zero, or tv_nsec was not less than 1000,000,000). EINVAL The operation specified in futex_op employs one or both of the pointers uaddr and uaddr2, but one of these does not point to a valid object—that is, the address is not four-byte-aligned. EINVAL (FUTEX_WAIT_BITSET, FUTEX_WAKE_BITSET) The bitset supplied in val3 is zero. EINVAL (FUTEX_CMP_REQUEUE_PI) uaddr equals uaddr2 (i.e., an attempt was made to requeue to the same futex). EINVAL (FUTEX_FD) The signal number supplied in val is invalid. EINVAL (FUTEX_WAKE, FUTEX_WAKE_OP, FUTEX_WAKE_BITSET, FUTEX_REQUEUE, FUTEX_CMP_REQUEUE) The kernel detected an inconsistency between the user-space state at uaddr and the kernel state—that is, it detected a waiter which waits in FUTEX_LOCK_PI on uaddr. EINVAL (FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, FUTEX_UNLOCK_PI) The kernel detected an inconsistency between the user-space state at uaddr and the kernel state. This indicates either state corruption or that the kernel found a waiter on uaddr which is waiting via FUTEX_WAIT or FUTEX_WAIT_BITSET. EINVAL (FUTEX_CMP_REQUEUE_PI) The kernel detected an inconsistency between the user-space state at uaddr2 and the kernel state; that is, the kernel detected a waiter which waits via FUTEX_WAIT on uaddr2. EINVAL (FUTEX_CMP_REQUEUE_PI) The kernel detected an inconsistency between the user-space state at uaddr and the kernel state; that is, the kernel detected a waiter which waits via FUTEX_WAIT or FUTEX_WAIT_BITESET on uaddr. EINVAL (FUTEX_CMP_REQUEUE_PI) The kernel detected an inconsistency between the user-space state at uaddr and the kernel state; that is, the kernel detected a waiter which waits on uaddr via FUTEX_LOCK_PI (instead of FUTEX_WAIT_REQUEUE_PI). EINVAL (FUTEX_CMP_REQUEUE_PI) An attempt was made to requeue a waiter to a futex other than that specified by the matching FUTEX_WAIT_REQUEUE_PI call for that waiter. EINVAL (FUTEX_CMP_REQUEUE_PI) The val argument is not 1. EINVAL Invalid argument. ENOMEM (FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, FUTEX_CMP_REQUEUE_PI) The ker‐ nel could not allocate memory to hold state information. ENFILE (FUTEX_FD) The system limit on the total number of open files has been reached. ENOSYS Invalid operation specified in futex_op. ENOSYS The FUTEX_CLOCK_REALTIME option was specified in futex_op, but the accompanying operation was neither FUTEX_WAIT_BITSET nor FUTEX_WAIT_REQUEUE_PI. ENOSYS (FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, FUTEX_UNLOCK_PI, FUTEX_CMP_REQUEUE_PI, FUTEX_WAIT_REQUEUE_PI) A run-time check determined that the operation is not available. The PI futex operations are not implemented on all architectures and are not supported on some CPU variants. EPERM (FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, FUTEX_CMP_REQUEUE_PI) The caller is not allowed to attach itself to the futex at uaddr (for FUTEX_CMP_REQUEUE_PI: the futex at uaddr2). (This may be caused by a state corruption in user space.) EPERM (FUTEX_UNLOCK_PI) The caller does not own the lock represented by the futex word. ESRCH (FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, FUTEX_CMP_REQUEUE_PI) The thread ID in the futex word at uaddr does not exist. ESRCH (FUTEX_CMP_REQUEUE_PI) The thread ID in the futex word at uaddr2 does not exist. ETIMEDOUT The operation in futex_op employed the timeout specified in timeout, and the timeout expired before the operation completed. VERSIONS Futexes were first made available in a stable kernel release with Linux 2.6.0. Initial futex support was merged in Linux 2.5.7 but with different semantics from what was described above. A four-argument system call with the semantics described in this page was introduced in Linux 2.5.40. In Linux 2.5.70, one argument was added. In Linux 2.6.7, a sixth argument was added—messy, especially on the s390 architecture. CONFORMING TO This system call is Linux-specific. NOTES Glibc does not provide a wrapper for this system call; call it using syscall(2). EXAMPLE The program below demonstrates use of futexes in a program where parent and child use a pair of futexes located inside a shared anonymous map‐ ping to synchronize access to a shared resource: the terminal. The two processes each write nloops (a command-line argument that defaults to 5 if omitted) messages to the terminal and employ a synchronization pro‐ tocol that ensures that they alternate in writing messages. Upon run‐ ning this program we see output such as the following: $ ./futex_demo Parent (18534) 0 Child (18535) 0 Parent (18534) 1 Child (18535) 1 Parent (18534) 2 Child (18535) 2 Parent (18534) 3 Child (18535) 3 Parent (18534) 4 Child (18535) 4 Program source /* futex_demo.c Usage: futex_demo [nloops] (Default: 5) Demonstrate the use of futexes in a program where parent and child use a pair of futexes located inside a shared anonymous mapping to synchronize access to a shared resource: the terminal. The two processes each write 'num-loops' messages to the terminal and employ a synchronization protocol that ensures that they alternate in writing messages. */ #define _GNU_SOURCE #include <stdio.h> #include <errno.h> #include <stdlib.h> #include <unistd.h> #include <sys/wait.h> #include <sys/mman.h> #include <sys/syscall.h> #include <linux/futex.h> #include <sys/time.h> #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \ } while (0) static int *futex1, *futex2, *iaddr; static int futex(int *uaddr, int futex_op, int val, const struct timespec *timeout, int *uaddr2, int val3) { return syscall(SYS_futex, uaddr, futex_op, val, timeout, uaddr, val3); } /* Acquire the futex pointed to by 'futexp': wait for its value to become 1, and then set the value to 0. */ static void fwait(int *futexp) { int s; /* __sync_bool_compare_and_swap(ptr, oldval, newval) is a gcc built-in function. It atomically performs the equivalent of: if (*ptr == oldval) *ptr = newval; It returns true if the test yielded true and *ptr was updated. The alternative here would be to employ the equivalent atomic machine-language instructions. For further information, see the GCC Manual. */ while (1) { /* Is the futex available? */ if (__sync_bool_compare_and_swap(futexp, 1, 0)) break; /* Yes */ /* Futex is not available; wait */ s = futex(futexp, FUTEX_WAIT, 0, NULL, NULL, 0); if (s == -1 && errno != EAGAIN) errExit("futex-FUTEX_WAIT"); } } /* Release the futex pointed to by 'futexp': if the futex currently has the value 0, set its value to 1 and the wake any futex waiters, so that if the peer is blocked in fpost(), it can proceed. */ static void fpost(int *futexp) { int s; /* __sync_bool_compare_and_swap() was described in comments above */ if (__sync_bool_compare_and_swap(futexp, 0, 1)) { s = futex(futexp, FUTEX_WAKE, 1, NULL, NULL, 0); if (s == -1) errExit("futex-FUTEX_WAKE"); } } int main(int argc, char *argv[]) { pid_t childPid; int j, nloops; setbuf(stdout, NULL); nloops = (argc > 1) ? atoi(argv[1]) : 5; /* Create a shared anonymous mapping that will hold the futexes. Since the futexes are being shared between processes, we subsequently use the "shared" futex operations (i.e., not the ones suffixed "_PRIVATE") */ iaddr = mmap(NULL, sizeof(int) * 2, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_SHARED, -1, 0); if (iaddr == MAP_FAILED) errExit("mmap"); futex1 = &iaddr[0]; futex2 = &iaddr[1]; *futex1 = 0; /* State: unavailable */ *futex2 = 1; /* State: available */ /* Create a child process that inherits the shared anonymous mapping */ childPid = fork(); if (childPid == -1) errExit("fork"); if (childPid == 0) { /* Child */ for (j = 0; j < nloops; j++) { fwait(futex1); printf("Child (%ld) %d\n", (long) getpid(), j); fpost(futex2); } exit(EXIT_SUCCESS); } /* Parent falls through to here */ for (j = 0; j < nloops; j++) { fwait(futex2); printf("Parent (%ld) %d\n", (long) getpid(), j); fpost(futex1); } wait(NULL); exit(EXIT_SUCCESS); } SEE ALSO get_robust_list(2), restart_syscall(2), futex(7) The following kernel source files: * Documentation/pi-futex.txt * Documentation/futex-requeue-pi.txt * Documentation/locking/rt-mutex.txt * Documentation/locking/rt-mutex-design.txt * Documentation/robust-futex-ABI.txt Franke, H., Russell, R., and Kirwood, M., 2002. Fuss, Futexes and Fur‐ wocks: Fast Userlevel Locking in Linux (from proceedings of the Ottawa Linux Symposium 2002), ⟨http://kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf⟩ Hart, D., 2009. A futex overview and update, ⟨http://lwn.net/Articles/360699/⟩ Hart, D. and Guniguntala, D., 2009. Requeue-PI: Making Glibc Condvars PI-Aware (from proceedings of the 2009 Real-Time Linux Workshop), ⟨http://lwn.net/images/conf/rtlws11/papers/proc/p10.pdf⟩ Drepper, U., 2011. Futexes Are Tricky, ⟨http://www.akkadia.org/drepper/futex.pdf⟩ Futex example library, futex-*.tar.bz2 at ⟨ftp://ftp.kernel.org/pub/linux/kernel/people/rusty/⟩ Linux 2014-05-21 FUTEX(2) -- To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to majord...@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/