On 03/26/2015 09:45 AM, Gioh Kim wrote:
My platform is suffering with the external fragmentation problem.
If I run a heavy load test for a few days in 1GB memory system, I cannot
allocate even order=3 pages because-of the external fragmentation.
I found that my driver is main reason.
It repeats to allocate 16MB pages with alloc_page(GFP_KERNEL) and
totally consumes 300~400MB pages of 1GB system.
I thought I needed a anti-fragmentation solution for my driver.
But there is no allocation function that considers fragmentation.
The compaction is not helpful because it is only for movable pages, not
unmovable pages.
This patch proposes a allocation function allocates only pages in the same
pageblock.
I tested this patch like following to check that I can get high order page
with new allocator.
1. When the driver allocates about 400MB and do "cat /proc/pagetypeinfo;cat
/proc/buddyinfo"
Free pages count per migrate type at order 0 1 2 3 4
5 6 7 8 9 10
Node 0, zone Normal, type Unmovable 3864 728 394 216 129
47 18 9 1 0 0
Node 0, zone Normal, type Reclaimable 902 96 68 17 3
0 1 0 0 0 0
Node 0, zone Normal, type Movable 5146 663 178 91 43
16 4 0 0 0 0
Node 0, zone Normal, type Reserve 1 4 6 6 2
1 1 1 0 1 1
Node 0, zone Normal, type CMA 0 0 0 0 0
0 0 0 0 0 0
Node 0, zone Normal, type Isolate 0 0 0 0 0
0 0 0 0 0 0
Number of blocks type Unmovable Reclaimable Movable Reserve
CMA Isolate
Node 0, zone Normal 135 3 124 2
0 0
Node 0, zone Normal 9880 1489 647 332 177 64 24 10
1 1 1
2. The driver allocates pages with alloc_pages_compact
and copy page contents and free old pages.
This is a kind of compaction of the driver.
Following is the result of "cat /proc/pagetypeinfo;cat /proc/buddyinfo"
Free pages count per migrate type at order 0 1 2 3 4
5 6 7 8 9 10
Node 0, zone Normal, type Unmovable 8 5 1 432 272
91 37 11 1 0 0
Node 0, zone Normal, type Reclaimable 901 96 68 17 3
0 1 0 0 0 0
Node 0, zone Normal, type Movable 4790 776 192 91 43
16 4 0 0 0 0
Node 0, zone Normal, type Reserve 1 4 6 6 2
1 1 1 0 1 1
Node 0, zone Normal, type CMA 0 0 0 0 0
0 0 0 0 0 0
Node 0, zone Normal, type Isolate 0 0 0 0 0
0 0 0 0 0 0
Number of blocks type Unmovable Reclaimable Movable Reserve
CMA Isolate
Node 0, zone Normal 135 3 124 2
0 0
Node 0, zone Normal 5693 877 266 544 320 108 43 12
1 1 1
I found that high order pages are increased.
Again, this test is not a good argument as explained in my reply to v2.
And I did another test. Following test is counting mixed blocks
after page allocation.
How is "mixed" defined and determined?
In virtualbox system with 4-CPUs and 768MB memory I had runned kernel build
and I allocated pages with alloc_page and alloc_pages_compact.
1. kernel build make -j8 and cat /proc/pagetypeinfo
Number of mixed blocks Unmovable Reclaimable Movable Reserve
Node 0, zone DMA 0 0 3 1
Node 0, zone Normal 8 10 89 0
2. alloc_pages_compact(GFP_USER, 4096) X 10-times and cat /proc/pagetypeinfo
Number of mixed blocks Unmovable Reclaimable Movable Reserve
Node 0, zone DMA 0 0 3 1
Node 0, zone Normal 8 10 89 0
I found there is no more fragmentation.
Following is alloc_pages test.
1. kernel build naje -j8 and cat /proc/pagetypeinfo
Number of mixed blocks Unmovable Reclaimable Movable Reserve
Node 0, zone DMA 0 0 3 1
Node 0, zone Normal 8 7 100 1
2. alloc_page(GFP_USER) X 4096-times X 10-times and cat /proc/pagetypeinfo
Number of mixed blocks Unmovable Reclaimable Movable Reserve
Node 0, zone DMA 0 0 3 1
Node 0, zone Normal 37 7 105 1
It generates fragmentation.
With above two tests I can get more high order pages and less mixed blocks.
Please include also data for "more high order pages".
The new allocator isn't to replace the common allocator alloc_pages.
It can be applied to a certain drivers that allocates many pages and don't need
fast allocation.
As Mel said, this seems rather specialized, the benefits seem to be
limited to a corner case, and similar to CMA, which could have some
relaxed mode of operation where it doesn't guarantee to be completely
contiguous, but with some best-effort approach it would give you
probably more compact ranges of pages than this patch?
When the system has serious fragmentation you can free pages and alloc pages
via alloc_page to decrease fragmentation. But it would last short and
fragmentation would increase soon. The new allocator can work like compaction
so that it decrease fragmentation for long time.
This patch is based on 3.16.
allocflags_to_migratetype should be changed into gfpflags_to_migratetype for
v4.0.
Changelog since v1:
- change argument of page order into page count
Changelog since v2:
- bug fix
- do not allocate page in different migratetype pageblock
- add new test result of mixed block count
Signed-off-by: Gioh Kim <gioh....@lge.com>
CC: Andrew Morton <a...@linux-foundation.org>
CC: Mel Gorman <mgor...@suse.de>
CC: Rik van Riel <r...@redhat.com>
CC: Johannes Weiner <han...@cmpxchg.org>
CC: David Rientjes <rient...@google.com>
CC: Vladimir Davydov <vdavy...@parallels.com>
CC: linux...@kvack.org
CC: linux-kernel@vger.kernel.org
---
mm/page_alloc.c | 160 +++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 160 insertions(+)
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 86c9a72..826618b 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -6646,3 +6646,163 @@ void dump_page(struct page *page, const char *reason)
dump_page_badflags(page, reason, 0);
}
EXPORT_SYMBOL(dump_page);
+
+static unsigned long alloc_freepages_block(unsigned long start_pfn,
+ unsigned long end_pfn,
+ int count,
+ struct list_head *freelist)
+{
+ int total_alloc = 0;
+ struct page *cursor, *valid_page = NULL;
+
+ cursor = pfn_to_page(start_pfn);
+
+ /* Isolate free pages. */
+ for (; start_pfn < end_pfn; start_pfn++, cursor++) {
+ int alloc, i;
+ struct page *page = cursor;
+
+ if (!pfn_valid_within(start_pfn))
+ continue;
+
+ if (!valid_page)
+ valid_page = page;
+ if (!PageBuddy(page))
+ continue;
+
+ if (!PageBuddy(page))
+ continue;
+
+ /* allocate only low-order pages */
+ if (page_order(page) >= 3) {
+ start_pfn += (1 << page_order(page)) - 1;
+ cursor += (1 << page_order(page)) - 1;
+ continue;
+ }
+
+ /* Found a free pages, break it into order-0 pages */
+ alloc = split_free_page(page);
+
+ total_alloc += alloc;
+ for (i = 0; i < alloc; i++) {
+ list_add(&page->lru, freelist);
+ page++;
+ }
+
+ if (total_alloc >= count)
+ break;
+
+ if (alloc) {
+ start_pfn += alloc - 1;
+ cursor += alloc - 1;
+ continue;
+ }
+ }
+
+ return total_alloc;
+}
+
+static int rmqueue_compact(struct zone *zone, int nr_request,
+ int migratetype, struct list_head *freepages)
+{
+ unsigned int current_order;
+ struct free_area *area;
+ struct page *page;
+ unsigned long block_start_pfn; /* start of current pageblock */
+ unsigned long block_end_pfn; /* end of current pageblock */
+ int total_alloc = 0;
+ unsigned long flags;
+ struct page *next;
+ int to_free = 0;
+ int nr_remain = nr_request;
+ int loop_count = 0;
+
+ spin_lock_irqsave(&zone->lock, flags);
+
+ /* Find a page of the appropriate size in the preferred list */
+ current_order = 0;
+ page = NULL;
+ while (current_order < 3) {
+ int alloc;
+
+ area = &(zone->free_area[current_order]);
+
+ if (list_empty(&area->free_list[migratetype]))
+ goto next_order;
+
+ page = list_entry(area->free_list[migratetype].next,
+ struct page, lru);
+
+ /*
+ * check migratetype of pageblock,
+ * some pages can be set as different migratetype
+ * by rmqueue_fallback
+ */
+ if (get_pageblock_migratetype(page) != migratetype) {
+ if (list_is_last(&page->lru,
+ &area->free_list[migratetype]))
+ goto next_order;
+ page = list_next_entry(page, lru);
+ }
+
+ block_start_pfn = page_to_pfn(page) & ~(pageblock_nr_pages - 1);
+ block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
+ zone_end_pfn(zone));
+
+ alloc = alloc_freepages_block(block_start_pfn,
+ block_end_pfn,
+ nr_remain,
+ freepages);
+ WARN(alloc == 0, "alloc can be ZERO????");
+
+ total_alloc += alloc;
+ nr_remain -= alloc;
+
+ if (nr_remain <= 0)
+ break;
+
+ continue;
+next_order:
+ current_order++;
+ loop_count = 0;
+ }
+ __mod_zone_page_state(zone, NR_ALLOC_BATCH, -total_alloc);
+ __count_zone_vm_events(PGALLOC, zone, total_alloc);
+
+ spin_unlock_irqrestore(&zone->lock, flags);
+
+ list_for_each_entry_safe(page, next, freepages, lru) {
+ if (to_free >= nr_request) {
+ list_del(&page->lru);
+ atomic_dec(&page->_count);
+ __free_pages_ok(page, 0);
+ }
+ to_free++;
+ }
+
+ list_for_each_entry(page, freepages, lru) {
+ arch_alloc_page(page, 0);
+ kernel_map_pages(page, 1, 1);
+ }
+ return total_alloc < nr_request ? total_alloc : nr_request;
+}
+
+int alloc_pages_compact(gfp_t gfp_mask, int nr_request,
+ struct list_head *freepages)
+{
+ enum zone_type high_zoneidx = gfp_zone(gfp_mask);
+ struct zone *preferred_zone;
+ struct zoneref *preferred_zoneref;
+
+ preferred_zoneref = first_zones_zonelist(node_zonelist(numa_node_id(),
+ gfp_mask),
+ high_zoneidx,
+ &cpuset_current_mems_allowed,
+ &preferred_zone);
+ if (!preferred_zone)
+ return 0;
+
+ return rmqueue_compact(preferred_zone, nr_request,
+ allocflags_to_migratetype(gfp_mask), freepages);
+}
+EXPORT_SYMBOL(alloc_pages_compact);
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majord...@vger.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/