All remaining references are userspace code to build tarballs, packages
or such.

Signed-off-by: Adam Borowski <kilob...@angband.pl>
---
 lib/Kconfig              |   3 -
 lib/Makefile             |   1 -
 lib/decompress.c         |   4 -
 lib/decompress_bunzip2.c | 756 ---------------------------------------
 scripts/Makefile.lib     |  12 +-
 5 files changed, 2 insertions(+), 774 deletions(-)
 delete mode 100644 lib/decompress_bunzip2.c

diff --git a/lib/Kconfig b/lib/Kconfig
index e7ab43fd5461..83a548b8c504 100644
--- a/lib/Kconfig
+++ b/lib/Kconfig
@@ -286,9 +286,6 @@ config DECOMPRESS_GZIP
        select ZLIB_INFLATE
        tristate
 
-config DECOMPRESS_BZIP2
-       tristate
-
 config DECOMPRESS_LZMA
        tristate
 
diff --git a/lib/Makefile b/lib/Makefile
index 58b48993f48a..4c1905e6d3a7 100644
--- a/lib/Makefile
+++ b/lib/Makefile
@@ -134,7 +134,6 @@ obj-$(CONFIG_XZ_DEC) += xz/
 obj-$(CONFIG_RAID6_PQ) += raid6/
 
 lib-$(CONFIG_DECOMPRESS_GZIP) += decompress_inflate.o
-lib-$(CONFIG_DECOMPRESS_BZIP2) += decompress_bunzip2.o
 lib-$(CONFIG_DECOMPRESS_LZMA) += decompress_unlzma.o
 lib-$(CONFIG_DECOMPRESS_XZ) += decompress_unxz.o
 lib-$(CONFIG_DECOMPRESS_LZO) += decompress_unlzo.o
diff --git a/lib/decompress.c b/lib/decompress.c
index ab3fc90ffc64..60f05122b9da 100644
--- a/lib/decompress.c
+++ b/lib/decompress.c
@@ -23,9 +23,6 @@
 #ifndef CONFIG_DECOMPRESS_GZIP
 # define gunzip NULL
 #endif
-#ifndef CONFIG_DECOMPRESS_BZIP2
-# define bunzip2 NULL
-#endif
 #ifndef CONFIG_DECOMPRESS_LZMA
 # define unlzma NULL
 #endif
@@ -51,7 +48,6 @@ struct compress_format {
 static const struct compress_format compressed_formats[] __initconst = {
        { {0x1f, 0x8b}, "gzip", gunzip },
        { {0x1f, 0x9e}, "gzip", gunzip },
-       { {0x42, 0x5a}, "bzip2", bunzip2 },
        { {0x5d, 0x00}, "lzma", unlzma },
        { {0xfd, 0x37}, "xz", unxz },
        { {0x89, 0x4c}, "lzo", unlzo },
diff --git a/lib/decompress_bunzip2.c b/lib/decompress_bunzip2.c
deleted file mode 100644
index 7c4932eed748..000000000000
--- a/lib/decompress_bunzip2.c
+++ /dev/null
@@ -1,756 +0,0 @@
-/*     Small bzip2 deflate implementation, by Rob Landley (r...@landley.net).
-
-       Based on bzip2 decompression code by Julian R Seward (jsew...@acm.org),
-       which also acknowledges contributions by Mike Burrows, David Wheeler,
-       Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
-       Robert Sedgewick, and Jon L. Bentley.
-
-       This code is licensed under the LGPLv2:
-               LGPL (http://www.gnu.org/copyleft/lgpl.html
-*/
-
-/*
-       Size and speed optimizations by Manuel Novoa III  (m...@codepoet.org).
-
-       More efficient reading of Huffman codes, a streamlined read_bunzip()
-       function, and various other tweaks.  In (limited) tests, approximately
-       20% faster than bzcat on x86 and about 10% faster on arm.
-
-       Note that about 2/3 of the time is spent in read_unzip() reversing
-       the Burrows-Wheeler transformation.  Much of that time is delay
-       resulting from cache misses.
-
-       I would ask that anyone benefiting from this work, especially those
-       using it in commercial products, consider making a donation to my local
-       non-profit hospice organization in the name of the woman I loved, who
-       passed away Feb. 12, 2003.
-
-               In memory of Toni W. Hagan
-
-               Hospice of Acadiana, Inc.
-               2600 Johnston St., Suite 200
-               Lafayette, LA 70503-3240
-
-               Phone (337) 232-1234 or 1-800-738-2226
-               Fax   (337) 232-1297
-
-               http://www.hospiceacadiana.com/
-
-       Manuel
- */
-
-/*
-       Made it fit for running in Linux Kernel by Alain Knaff (al...@knaff.lu)
-*/
-
-
-#ifdef STATIC
-#define PREBOOT
-#else
-#include <linux/decompress/bunzip2.h>
-#endif /* STATIC */
-
-#include <linux/decompress/mm.h>
-#include <linux/crc32poly.h>
-
-#ifndef INT_MAX
-#define INT_MAX 0x7fffffff
-#endif
-
-/* Constants for Huffman coding */
-#define MAX_GROUPS             6
-#define GROUP_SIZE             50      /* 64 would have been more efficient */
-#define MAX_HUFCODE_BITS       20      /* Longest Huffman code allowed */
-#define MAX_SYMBOLS            258     /* 256 literals + RUNA + RUNB */
-#define SYMBOL_RUNA            0
-#define SYMBOL_RUNB            1
-
-/* Status return values */
-#define RETVAL_OK                      0
-#define RETVAL_LAST_BLOCK              (-1)
-#define RETVAL_NOT_BZIP_DATA           (-2)
-#define RETVAL_UNEXPECTED_INPUT_EOF    (-3)
-#define RETVAL_UNEXPECTED_OUTPUT_EOF   (-4)
-#define RETVAL_DATA_ERROR              (-5)
-#define RETVAL_OUT_OF_MEMORY           (-6)
-#define RETVAL_OBSOLETE_INPUT          (-7)
-
-/* Other housekeeping constants */
-#define BZIP2_IOBUF_SIZE               4096
-
-/* This is what we know about each Huffman coding group */
-struct group_data {
-       /* We have an extra slot at the end of limit[] for a sentinal value. */
-       int limit[MAX_HUFCODE_BITS+1];
-       int base[MAX_HUFCODE_BITS];
-       int permute[MAX_SYMBOLS];
-       int minLen, maxLen;
-};
-
-/* Structure holding all the housekeeping data, including IO buffers and
-   memory that persists between calls to bunzip */
-struct bunzip_data {
-       /* State for interrupting output loop */
-       int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent;
-       /* I/O tracking data (file handles, buffers, positions, etc.) */
-       long (*fill)(void*, unsigned long);
-       long inbufCount, inbufPos /*, outbufPos*/;
-       unsigned char *inbuf /*,*outbuf*/;
-       unsigned int inbufBitCount, inbufBits;
-       /* The CRC values stored in the block header and calculated from the
-       data */
-       unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC;
-       /* Intermediate buffer and its size (in bytes) */
-       unsigned int *dbuf, dbufSize;
-       /* These things are a bit too big to go on the stack */
-       unsigned char selectors[32768];         /* nSelectors = 15 bits */
-       struct group_data groups[MAX_GROUPS];   /* Huffman coding tables */
-       int io_error;                   /* non-zero if we have IO error */
-       int byteCount[256];
-       unsigned char symToByte[256], mtfSymbol[256];
-};
-
-
-/* Return the next nnn bits of input.  All reads from the compressed input
-   are done through this function.  All reads are big endian */
-static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted)
-{
-       unsigned int bits = 0;
-
-       /* If we need to get more data from the byte buffer, do so.
-          (Loop getting one byte at a time to enforce endianness and avoid
-          unaligned access.) */
-       while (bd->inbufBitCount < bits_wanted) {
-               /* If we need to read more data from file into byte buffer, do
-                  so */
-               if (bd->inbufPos == bd->inbufCount) {
-                       if (bd->io_error)
-                               return 0;
-                       bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE);
-                       if (bd->inbufCount <= 0) {
-                               bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF;
-                               return 0;
-                       }
-                       bd->inbufPos = 0;
-               }
-               /* Avoid 32-bit overflow (dump bit buffer to top of output) */
-               if (bd->inbufBitCount >= 24) {
-                       bits = bd->inbufBits&((1 << bd->inbufBitCount)-1);
-                       bits_wanted -= bd->inbufBitCount;
-                       bits <<= bits_wanted;
-                       bd->inbufBitCount = 0;
-               }
-               /* Grab next 8 bits of input from buffer. */
-               bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
-               bd->inbufBitCount += 8;
-       }
-       /* Calculate result */
-       bd->inbufBitCount -= bits_wanted;
-       bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1);
-
-       return bits;
-}
-
-/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
-
-static int INIT get_next_block(struct bunzip_data *bd)
-{
-       struct group_data *hufGroup = NULL;
-       int *base = NULL;
-       int *limit = NULL;
-       int dbufCount, nextSym, dbufSize, groupCount, selector,
-               i, j, k, t, runPos, symCount, symTotal, nSelectors, *byteCount;
-       unsigned char uc, *symToByte, *mtfSymbol, *selectors;
-       unsigned int *dbuf, origPtr;
-
-       dbuf = bd->dbuf;
-       dbufSize = bd->dbufSize;
-       selectors = bd->selectors;
-       byteCount = bd->byteCount;
-       symToByte = bd->symToByte;
-       mtfSymbol = bd->mtfSymbol;
-
-       /* Read in header signature and CRC, then validate signature.
-          (last block signature means CRC is for whole file, return now) */
-       i = get_bits(bd, 24);
-       j = get_bits(bd, 24);
-       bd->headerCRC = get_bits(bd, 32);
-       if ((i == 0x177245) && (j == 0x385090))
-               return RETVAL_LAST_BLOCK;
-       if ((i != 0x314159) || (j != 0x265359))
-               return RETVAL_NOT_BZIP_DATA;
-       /* We can add support for blockRandomised if anybody complains.
-          There was some code for this in busybox 1.0.0-pre3, but nobody ever
-          noticed that it didn't actually work. */
-       if (get_bits(bd, 1))
-               return RETVAL_OBSOLETE_INPUT;
-       origPtr = get_bits(bd, 24);
-       if (origPtr >= dbufSize)
-               return RETVAL_DATA_ERROR;
-       /* mapping table: if some byte values are never used (encoding things
-          like ascii text), the compression code removes the gaps to have fewer
-          symbols to deal with, and writes a sparse bitfield indicating which
-          values were present.  We make a translation table to convert the
-          symbols back to the corresponding bytes. */
-       t = get_bits(bd, 16);
-       symTotal = 0;
-       for (i = 0; i < 16; i++) {
-               if (t&(1 << (15-i))) {
-                       k = get_bits(bd, 16);
-                       for (j = 0; j < 16; j++)
-                               if (k&(1 << (15-j)))
-                                       symToByte[symTotal++] = (16*i)+j;
-               }
-       }
-       /* How many different Huffman coding groups does this block use? */
-       groupCount = get_bits(bd, 3);
-       if (groupCount < 2 || groupCount > MAX_GROUPS)
-               return RETVAL_DATA_ERROR;
-       /* nSelectors: Every GROUP_SIZE many symbols we select a new
-          Huffman coding group.  Read in the group selector list,
-          which is stored as MTF encoded bit runs.  (MTF = Move To
-          Front, as each value is used it's moved to the start of the
-          list.) */
-       nSelectors = get_bits(bd, 15);
-       if (!nSelectors)
-               return RETVAL_DATA_ERROR;
-       for (i = 0; i < groupCount; i++)
-               mtfSymbol[i] = i;
-       for (i = 0; i < nSelectors; i++) {
-               /* Get next value */
-               for (j = 0; get_bits(bd, 1); j++)
-                       if (j >= groupCount)
-                               return RETVAL_DATA_ERROR;
-               /* Decode MTF to get the next selector */
-               uc = mtfSymbol[j];
-               for (; j; j--)
-                       mtfSymbol[j] = mtfSymbol[j-1];
-               mtfSymbol[0] = selectors[i] = uc;
-       }
-       /* Read the Huffman coding tables for each group, which code
-          for symTotal literal symbols, plus two run symbols (RUNA,
-          RUNB) */
-       symCount = symTotal+2;
-       for (j = 0; j < groupCount; j++) {
-               unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1];
-               int     minLen, maxLen, pp;
-               /* Read Huffman code lengths for each symbol.  They're
-                  stored in a way similar to mtf; record a starting
-                  value for the first symbol, and an offset from the
-                  previous value for everys symbol after that.
-                  (Subtracting 1 before the loop and then adding it
-                  back at the end is an optimization that makes the
-                  test inside the loop simpler: symbol length 0
-                  becomes negative, so an unsigned inequality catches
-                  it.) */
-               t = get_bits(bd, 5)-1;
-               for (i = 0; i < symCount; i++) {
-                       for (;;) {
-                               if (((unsigned)t) > (MAX_HUFCODE_BITS-1))
-                                       return RETVAL_DATA_ERROR;
-
-                               /* If first bit is 0, stop.  Else
-                                  second bit indicates whether to
-                                  increment or decrement the value.
-                                  Optimization: grab 2 bits and unget
-                                  the second if the first was 0. */
-
-                               k = get_bits(bd, 2);
-                               if (k < 2) {
-                                       bd->inbufBitCount++;
-                                       break;
-                               }
-                               /* Add one if second bit 1, else
-                                * subtract 1.  Avoids if/else */
-                               t += (((k+1)&2)-1);
-                       }
-                       /* Correct for the initial -1, to get the
-                        * final symbol length */
-                       length[i] = t+1;
-               }
-               /* Find largest and smallest lengths in this group */
-               minLen = maxLen = length[0];
-
-               for (i = 1; i < symCount; i++) {
-                       if (length[i] > maxLen)
-                               maxLen = length[i];
-                       else if (length[i] < minLen)
-                               minLen = length[i];
-               }
-
-               /* Calculate permute[], base[], and limit[] tables from
-                * length[].
-                *
-                * permute[] is the lookup table for converting
-                * Huffman coded symbols into decoded symbols.  base[]
-                * is the amount to subtract from the value of a
-                * Huffman symbol of a given length when using
-                * permute[].
-                *
-                * limit[] indicates the largest numerical value a
-                * symbol with a given number of bits can have.  This
-                * is how the Huffman codes can vary in length: each
-                * code with a value > limit[length] needs another
-                * bit.
-                */
-               hufGroup = bd->groups+j;
-               hufGroup->minLen = minLen;
-               hufGroup->maxLen = maxLen;
-               /* Note that minLen can't be smaller than 1, so we
-                  adjust the base and limit array pointers so we're
-                  not always wasting the first entry.  We do this
-                  again when using them (during symbol decoding).*/
-               base = hufGroup->base-1;
-               limit = hufGroup->limit-1;
-               /* Calculate permute[].  Concurrently, initialize
-                * temp[] and limit[]. */
-               pp = 0;
-               for (i = minLen; i <= maxLen; i++) {
-                       temp[i] = limit[i] = 0;
-                       for (t = 0; t < symCount; t++)
-                               if (length[t] == i)
-                                       hufGroup->permute[pp++] = t;
-               }
-               /* Count symbols coded for at each bit length */
-               for (i = 0; i < symCount; i++)
-                       temp[length[i]]++;
-               /* Calculate limit[] (the largest symbol-coding value
-                *at each bit length, which is (previous limit <<
-                *1)+symbols at this level), and base[] (number of
-                *symbols to ignore at each bit length, which is limit
-                *minus the cumulative count of symbols coded for
-                *already). */
-               pp = t = 0;
-               for (i = minLen; i < maxLen; i++) {
-                       pp += temp[i];
-                       /* We read the largest possible symbol size
-                          and then unget bits after determining how
-                          many we need, and those extra bits could be
-                          set to anything.  (They're noise from
-                          future symbols.)  At each level we're
-                          really only interested in the first few
-                          bits, so here we set all the trailing
-                          to-be-ignored bits to 1 so they don't
-                          affect the value > limit[length]
-                          comparison. */
-                       limit[i] = (pp << (maxLen - i)) - 1;
-                       pp <<= 1;
-                       base[i+1] = pp-(t += temp[i]);
-               }
-               limit[maxLen+1] = INT_MAX; /* Sentinal value for
-                                           * reading next sym. */
-               limit[maxLen] = pp+temp[maxLen]-1;
-               base[minLen] = 0;
-       }
-       /* We've finished reading and digesting the block header.  Now
-          read this block's Huffman coded symbols from the file and
-          undo the Huffman coding and run length encoding, saving the
-          result into dbuf[dbufCount++] = uc */
-
-       /* Initialize symbol occurrence counters and symbol Move To
-        * Front table */
-       for (i = 0; i < 256; i++) {
-               byteCount[i] = 0;
-               mtfSymbol[i] = (unsigned char)i;
-       }
-       /* Loop through compressed symbols. */
-       runPos = dbufCount = symCount = selector = 0;
-       for (;;) {
-               /* Determine which Huffman coding group to use. */
-               if (!(symCount--)) {
-                       symCount = GROUP_SIZE-1;
-                       if (selector >= nSelectors)
-                               return RETVAL_DATA_ERROR;
-                       hufGroup = bd->groups+selectors[selector++];
-                       base = hufGroup->base-1;
-                       limit = hufGroup->limit-1;
-               }
-               /* Read next Huffman-coded symbol. */
-               /* Note: It is far cheaper to read maxLen bits and
-                  back up than it is to read minLen bits and then an
-                  additional bit at a time, testing as we go.
-                  Because there is a trailing last block (with file
-                  CRC), there is no danger of the overread causing an
-                  unexpected EOF for a valid compressed file.  As a
-                  further optimization, we do the read inline
-                  (falling back to a call to get_bits if the buffer
-                  runs dry).  The following (up to got_huff_bits:) is
-                  equivalent to j = get_bits(bd, hufGroup->maxLen);
-                */
-               while (bd->inbufBitCount < hufGroup->maxLen) {
-                       if (bd->inbufPos == bd->inbufCount) {
-                               j = get_bits(bd, hufGroup->maxLen);
-                               goto got_huff_bits;
-                       }
-                       bd->inbufBits =
-                               (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
-                       bd->inbufBitCount += 8;
-               };
-               bd->inbufBitCount -= hufGroup->maxLen;
-               j = (bd->inbufBits >> bd->inbufBitCount)&
-                       ((1 << hufGroup->maxLen)-1);
-got_huff_bits:
-               /* Figure how how many bits are in next symbol and
-                * unget extras */
-               i = hufGroup->minLen;
-               while (j > limit[i])
-                       ++i;
-               bd->inbufBitCount += (hufGroup->maxLen - i);
-               /* Huffman decode value to get nextSym (with bounds checking) */
-               if ((i > hufGroup->maxLen)
-                       || (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i]))
-                               >= MAX_SYMBOLS))
-                       return RETVAL_DATA_ERROR;
-               nextSym = hufGroup->permute[j];
-               /* We have now decoded the symbol, which indicates
-                  either a new literal byte, or a repeated run of the
-                  most recent literal byte.  First, check if nextSym
-                  indicates a repeated run, and if so loop collecting
-                  how many times to repeat the last literal. */
-               if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */
-                       /* If this is the start of a new run, zero out
-                        * counter */
-                       if (!runPos) {
-                               runPos = 1;
-                               t = 0;
-                       }
-                       /* Neat trick that saves 1 symbol: instead of
-                          or-ing 0 or 1 at each bit position, add 1
-                          or 2 instead.  For example, 1011 is 1 << 0
-                          + 1 << 1 + 2 << 2.  1010 is 2 << 0 + 2 << 1
-                          + 1 << 2.  You can make any bit pattern
-                          that way using 1 less symbol than the basic
-                          or 0/1 method (except all bits 0, which
-                          would use no symbols, but a run of length 0
-                          doesn't mean anything in this context).
-                          Thus space is saved. */
-                       t += (runPos << nextSym);
-                       /* +runPos if RUNA; +2*runPos if RUNB */
-
-                       runPos <<= 1;
-                       continue;
-               }
-               /* When we hit the first non-run symbol after a run,
-                  we now know how many times to repeat the last
-                  literal, so append that many copies to our buffer
-                  of decoded symbols (dbuf) now.  (The last literal
-                  used is the one at the head of the mtfSymbol
-                  array.) */
-               if (runPos) {
-                       runPos = 0;
-                       if (dbufCount+t >= dbufSize)
-                               return RETVAL_DATA_ERROR;
-
-                       uc = symToByte[mtfSymbol[0]];
-                       byteCount[uc] += t;
-                       while (t--)
-                               dbuf[dbufCount++] = uc;
-               }
-               /* Is this the terminating symbol? */
-               if (nextSym > symTotal)
-                       break;
-               /* At this point, nextSym indicates a new literal
-                  character.  Subtract one to get the position in the
-                  MTF array at which this literal is currently to be
-                  found.  (Note that the result can't be -1 or 0,
-                  because 0 and 1 are RUNA and RUNB.  But another
-                  instance of the first symbol in the mtf array,
-                  position 0, would have been handled as part of a
-                  run above.  Therefore 1 unused mtf position minus 2
-                  non-literal nextSym values equals -1.) */
-               if (dbufCount >= dbufSize)
-                       return RETVAL_DATA_ERROR;
-               i = nextSym - 1;
-               uc = mtfSymbol[i];
-               /* Adjust the MTF array.  Since we typically expect to
-                *move only a small number of symbols, and are bound
-                *by 256 in any case, using memmove here would
-                *typically be bigger and slower due to function call
-                *overhead and other assorted setup costs. */
-               do {
-                       mtfSymbol[i] = mtfSymbol[i-1];
-               } while (--i);
-               mtfSymbol[0] = uc;
-               uc = symToByte[uc];
-               /* We have our literal byte.  Save it into dbuf. */
-               byteCount[uc]++;
-               dbuf[dbufCount++] = (unsigned int)uc;
-       }
-       /* At this point, we've read all the Huffman-coded symbols
-          (and repeated runs) for this block from the input stream,
-          and decoded them into the intermediate buffer.  There are
-          dbufCount many decoded bytes in dbuf[].  Now undo the
-          Burrows-Wheeler transform on dbuf.  See
-          http://dogma.net/markn/articles/bwt/bwt.htm
-        */
-       /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
-       j = 0;
-       for (i = 0; i < 256; i++) {
-               k = j+byteCount[i];
-               byteCount[i] = j;
-               j = k;
-       }
-       /* Figure out what order dbuf would be in if we sorted it. */
-       for (i = 0; i < dbufCount; i++) {
-               uc = (unsigned char)(dbuf[i] & 0xff);
-               dbuf[byteCount[uc]] |= (i << 8);
-               byteCount[uc]++;
-       }
-       /* Decode first byte by hand to initialize "previous" byte.
-          Note that it doesn't get output, and if the first three
-          characters are identical it doesn't qualify as a run (hence
-          writeRunCountdown = 5). */
-       if (dbufCount) {
-               if (origPtr >= dbufCount)
-                       return RETVAL_DATA_ERROR;
-               bd->writePos = dbuf[origPtr];
-               bd->writeCurrent = (unsigned char)(bd->writePos&0xff);
-               bd->writePos >>= 8;
-               bd->writeRunCountdown = 5;
-       }
-       bd->writeCount = dbufCount;
-
-       return RETVAL_OK;
-}
-
-/* Undo burrows-wheeler transform on intermediate buffer to produce output.
-   If start_bunzip was initialized with out_fd =-1, then up to len bytes of
-   data are written to outbuf.  Return value is number of bytes written or
-   error (all errors are negative numbers).  If out_fd!=-1, outbuf and len
-   are ignored, data is written to out_fd and return is RETVAL_OK or error.
-*/
-
-static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len)
-{
-       const unsigned int *dbuf;
-       int pos, xcurrent, previous, gotcount;
-
-       /* If last read was short due to end of file, return last block now */
-       if (bd->writeCount < 0)
-               return bd->writeCount;
-
-       gotcount = 0;
-       dbuf = bd->dbuf;
-       pos = bd->writePos;
-       xcurrent = bd->writeCurrent;
-
-       /* We will always have pending decoded data to write into the output
-          buffer unless this is the very first call (in which case we haven't
-          Huffman-decoded a block into the intermediate buffer yet). */
-
-       if (bd->writeCopies) {
-               /* Inside the loop, writeCopies means extra copies (beyond 1) */
-               --bd->writeCopies;
-               /* Loop outputting bytes */
-               for (;;) {
-                       /* If the output buffer is full, snapshot
-                        * state and return */
-                       if (gotcount >= len) {
-                               bd->writePos = pos;
-                               bd->writeCurrent = xcurrent;
-                               bd->writeCopies++;
-                               return len;
-                       }
-                       /* Write next byte into output buffer, updating CRC */
-                       outbuf[gotcount++] = xcurrent;
-                       bd->writeCRC = (((bd->writeCRC) << 8)
-                               ^bd->crc32Table[((bd->writeCRC) >> 24)
-                               ^xcurrent]);
-                       /* Loop now if we're outputting multiple
-                        * copies of this byte */
-                       if (bd->writeCopies) {
-                               --bd->writeCopies;
-                               continue;
-                       }
-decode_next_byte:
-                       if (!bd->writeCount--)
-                               break;
-                       /* Follow sequence vector to undo
-                        * Burrows-Wheeler transform */
-                       previous = xcurrent;
-                       pos = dbuf[pos];
-                       xcurrent = pos&0xff;
-                       pos >>= 8;
-                       /* After 3 consecutive copies of the same
-                          byte, the 4th is a repeat count.  We count
-                          down from 4 instead *of counting up because
-                          testing for non-zero is faster */
-                       if (--bd->writeRunCountdown) {
-                               if (xcurrent != previous)
-                                       bd->writeRunCountdown = 4;
-                       } else {
-                               /* We have a repeated run, this byte
-                                * indicates the count */
-                               bd->writeCopies = xcurrent;
-                               xcurrent = previous;
-                               bd->writeRunCountdown = 5;
-                               /* Sometimes there are just 3 bytes
-                                * (run length 0) */
-                               if (!bd->writeCopies)
-                                       goto decode_next_byte;
-                               /* Subtract the 1 copy we'd output
-                                * anyway to get extras */
-                               --bd->writeCopies;
-                       }
-               }
-               /* Decompression of this block completed successfully */
-               bd->writeCRC = ~bd->writeCRC;
-               bd->totalCRC = ((bd->totalCRC << 1) |
-                               (bd->totalCRC >> 31)) ^ bd->writeCRC;
-               /* If this block had a CRC error, force file level CRC error. */
-               if (bd->writeCRC != bd->headerCRC) {
-                       bd->totalCRC = bd->headerCRC+1;
-                       return RETVAL_LAST_BLOCK;
-               }
-       }
-
-       /* Refill the intermediate buffer by Huffman-decoding next
-        * block of input */
-       /* (previous is just a convenient unused temp variable here) */
-       previous = get_next_block(bd);
-       if (previous) {
-               bd->writeCount = previous;
-               return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount;
-       }
-       bd->writeCRC = 0xffffffffUL;
-       pos = bd->writePos;
-       xcurrent = bd->writeCurrent;
-       goto decode_next_byte;
-}
-
-static long INIT nofill(void *buf, unsigned long len)
-{
-       return -1;
-}
-
-/* Allocate the structure, read file header.  If in_fd ==-1, inbuf must contain
-   a complete bunzip file (len bytes long).  If in_fd!=-1, inbuf and len are
-   ignored, and data is read from file handle into temporary buffer. */
-static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, long len,
-                            long (*fill)(void*, unsigned long))
-{
-       struct bunzip_data *bd;
-       unsigned int i, j, c;
-       const unsigned int BZh0 =
-               (((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16)
-               +(((unsigned int)'h') << 8)+(unsigned int)'0';
-
-       /* Figure out how much data to allocate */
-       i = sizeof(struct bunzip_data);
-
-       /* Allocate bunzip_data.  Most fields initialize to zero. */
-       bd = *bdp = malloc(i);
-       if (!bd)
-               return RETVAL_OUT_OF_MEMORY;
-       memset(bd, 0, sizeof(struct bunzip_data));
-       /* Setup input buffer */
-       bd->inbuf = inbuf;
-       bd->inbufCount = len;
-       if (fill != NULL)
-               bd->fill = fill;
-       else
-               bd->fill = nofill;
-
-       /* Init the CRC32 table (big endian) */
-       for (i = 0; i < 256; i++) {
-               c = i << 24;
-               for (j = 8; j; j--)
-                       c = c&0x80000000 ? (c << 1)^(CRC32_POLY_BE) : (c << 1);
-               bd->crc32Table[i] = c;
-       }
-
-       /* Ensure that file starts with "BZh['1'-'9']." */
-       i = get_bits(bd, 32);
-       if (((unsigned int)(i-BZh0-1)) >= 9)
-               return RETVAL_NOT_BZIP_DATA;
-
-       /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
-          uncompressed data.  Allocate intermediate buffer for block. */
-       bd->dbufSize = 100000*(i-BZh0);
-
-       bd->dbuf = large_malloc(bd->dbufSize * sizeof(int));
-       if (!bd->dbuf)
-               return RETVAL_OUT_OF_MEMORY;
-       return RETVAL_OK;
-}
-
-/* Example usage: decompress src_fd to dst_fd.  (Stops at end of bzip2 data,
-   not end of file.) */
-STATIC int INIT bunzip2(unsigned char *buf, long len,
-                       long (*fill)(void*, unsigned long),
-                       long (*flush)(void*, unsigned long),
-                       unsigned char *outbuf,
-                       long *pos,
-                       void(*error)(char *x))
-{
-       struct bunzip_data *bd;
-       int i = -1;
-       unsigned char *inbuf;
-
-       if (flush)
-               outbuf = malloc(BZIP2_IOBUF_SIZE);
-
-       if (!outbuf) {
-               error("Could not allocate output buffer");
-               return RETVAL_OUT_OF_MEMORY;
-       }
-       if (buf)
-               inbuf = buf;
-       else
-               inbuf = malloc(BZIP2_IOBUF_SIZE);
-       if (!inbuf) {
-               error("Could not allocate input buffer");
-               i = RETVAL_OUT_OF_MEMORY;
-               goto exit_0;
-       }
-       i = start_bunzip(&bd, inbuf, len, fill);
-       if (!i) {
-               for (;;) {
-                       i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE);
-                       if (i <= 0)
-                               break;
-                       if (!flush)
-                               outbuf += i;
-                       else
-                               if (i != flush(outbuf, i)) {
-                                       i = RETVAL_UNEXPECTED_OUTPUT_EOF;
-                                       break;
-                               }
-               }
-       }
-       /* Check CRC and release memory */
-       if (i == RETVAL_LAST_BLOCK) {
-               if (bd->headerCRC != bd->totalCRC)
-                       error("Data integrity error when decompressing.");
-               else
-                       i = RETVAL_OK;
-       } else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) {
-               error("Compressed file ends unexpectedly");
-       }
-       if (!bd)
-               goto exit_1;
-       if (bd->dbuf)
-               large_free(bd->dbuf);
-       if (pos)
-               *pos = bd->inbufPos;
-       free(bd);
-exit_1:
-       if (!buf)
-               free(inbuf);
-exit_0:
-       if (flush)
-               free(outbuf);
-       return i;
-}
-
-#ifdef PREBOOT
-STATIC int INIT __decompress(unsigned char *buf, long len,
-                       long (*fill)(void*, unsigned long),
-                       long (*flush)(void*, unsigned long),
-                       unsigned char *outbuf, long olen,
-                       long *pos,
-                       void (*error)(char *x))
-{
-       return bunzip2(buf, len - 4, fill, flush, outbuf, pos, error);
-}
-#endif
diff --git a/scripts/Makefile.lib b/scripts/Makefile.lib
index e79bb1444b29..b7b55cc4d743 100644
--- a/scripts/Makefile.lib
+++ b/scripts/Makefile.lib
@@ -294,10 +294,10 @@ $(obj)/%.dtb: $(src)/%.dts $(DTC) FORCE
 
 dtc-tmp = $(subst $(comma),_,$(dot-target).dts.tmp)
 
-# Bzip2
+# Lzma
 # ---------------------------------------------------------------------------
 
-# Bzip2 and LZMA do not include size in file... so we have to fake that;
+# LZMA does not include size in file... so we have to fake that;
 # append the size as a 32-bit littleendian number as gzip does.
 size_append = printf $(shell                                           \
 dec_size=0;                                                            \
@@ -314,14 +314,6 @@ printf "%08x\n" $$dec_size |                               
                \
        }                                                               \
 )
 
-quiet_cmd_bzip2 = BZIP2   $@
-cmd_bzip2 = (cat $(filter-out FORCE,$^) | \
-       bzip2 -9 && $(call size_append, $(filter-out FORCE,$^))) > $@ || \
-       (rm -f $@ ; false)
-
-# Lzma
-# ---------------------------------------------------------------------------
-
 quiet_cmd_lzma = LZMA    $@
 cmd_lzma = (cat $(filter-out FORCE,$^) | \
        lzma -9 && $(call size_append, $(filter-out FORCE,$^))) > $@ || \
-- 
2.19.1

Reply via email to