On 16-11-24 08:26 AM, Hayes Wang wrote: ..
Besides, it doesn't seem to occur for all platforms. I have tested the iperf more than 26 hours, and it still works fine. I think I would get the same result on x86 or x86_64 platform.
..
x86 has near fully-coherent memory, so it is the "easy" platform to get things working on. But Linux supports a very diverse number of platforms, with varying degrees of cache/memory coherency, and it can be tricky for things to work correctly on all of them. If you are testing with the driver as currently in 4.4.34, then you won't even notice when things are screwing up, because the driver just silently drops packets. Or it passes them on without noticing that they have bad data. Here (attached) is the instrumented driver I am using here now. I suggest you use it or something similar when testing, and not the stock driver. This one has also been converted to use non-cacheable RAM for the receive buffers -- something that is probably a Good Thing for it to do regardless of this investigation. It also never drops a packet without logging the event, so we can see just how often there's an issue. This version behaves almost perfectly here, but I am still experimenting to see what is actually necessary, and what is not. In particular, there are some mb() calls I had put in there that shouldn't be required, so I have yet to try removing them again and see what changes. It takes at least an overnight run to pop up one or two errors, so do expect to hear back again until after the weekend at this point. Also, unrelated, but inside r8152_submit_rx() there is this code: /* The rx would be stopped, so skip submitting */ if (test_bit(RTL8152_UNPLUG, &tp->flags) || !test_bit(WORK_ENABLE, &tp->flags) || !netif_carrier_ok(tp->netdev)) return 0; If that "return 0" statement is ever executed, doesn't it result in the loss/leak of a buffer? Thanks
/* * Copyright (c) 2014 Realtek Semiconductor Corp. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * */ #include <linux/signal.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/mii.h> #include <linux/ethtool.h> #include <linux/usb.h> #include <linux/crc32.h> #include <linux/if_vlan.h> #include <linux/uaccess.h> #include <linux/list.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <net/ip6_checksum.h> #include <uapi/linux/mdio.h> #include <linux/mdio.h> #include <linux/usb/cdc.h> /* Information for net-next */ #define NETNEXT_VERSION "08" /* Information for net */ #define NET_VERSION "2" #define DRIVER_VERSION "v1." NETNEXT_VERSION "." NET_VERSION #define DRIVER_AUTHOR "Realtek linux nic maintainers <nic_s...@realtek.com>" #define DRIVER_DESC "Realtek RTL8152/RTL8153 Based USB Ethernet Adapters" #define MODULENAME "r8152" #define R8152_PHY_ID 32 #define PLA_IDR 0xc000 #define PLA_RCR 0xc010 #define PLA_RMS 0xc016 #define PLA_RXFIFO_CTRL0 0xc0a0 #define PLA_RXFIFO_CTRL1 0xc0a4 #define PLA_RXFIFO_CTRL2 0xc0a8 #define PLA_DMY_REG0 0xc0b0 #define PLA_FMC 0xc0b4 #define PLA_CFG_WOL 0xc0b6 #define PLA_TEREDO_CFG 0xc0bc #define PLA_MAR 0xcd00 #define PLA_BACKUP 0xd000 #define PAL_BDC_CR 0xd1a0 #define PLA_TEREDO_TIMER 0xd2cc #define PLA_REALWOW_TIMER 0xd2e8 #define PLA_LEDSEL 0xdd90 #define PLA_LED_FEATURE 0xdd92 #define PLA_PHYAR 0xde00 #define PLA_BOOT_CTRL 0xe004 #define PLA_GPHY_INTR_IMR 0xe022 #define PLA_EEE_CR 0xe040 #define PLA_EEEP_CR 0xe080 #define PLA_MAC_PWR_CTRL 0xe0c0 #define PLA_MAC_PWR_CTRL2 0xe0ca #define PLA_MAC_PWR_CTRL3 0xe0cc #define PLA_MAC_PWR_CTRL4 0xe0ce #define PLA_WDT6_CTRL 0xe428 #define PLA_TCR0 0xe610 #define PLA_TCR1 0xe612 #define PLA_MTPS 0xe615 #define PLA_TXFIFO_CTRL 0xe618 #define PLA_RSTTALLY 0xe800 #define PLA_CR 0xe813 #define PLA_CRWECR 0xe81c #define PLA_CONFIG12 0xe81e /* CONFIG1, CONFIG2 */ #define PLA_CONFIG34 0xe820 /* CONFIG3, CONFIG4 */ #define PLA_CONFIG5 0xe822 #define PLA_PHY_PWR 0xe84c #define PLA_OOB_CTRL 0xe84f #define PLA_CPCR 0xe854 #define PLA_MISC_0 0xe858 #define PLA_MISC_1 0xe85a #define PLA_OCP_GPHY_BASE 0xe86c #define PLA_TALLYCNT 0xe890 #define PLA_SFF_STS_7 0xe8de #define PLA_PHYSTATUS 0xe908 #define PLA_BP_BA 0xfc26 #define PLA_BP_0 0xfc28 #define PLA_BP_1 0xfc2a #define PLA_BP_2 0xfc2c #define PLA_BP_3 0xfc2e #define PLA_BP_4 0xfc30 #define PLA_BP_5 0xfc32 #define PLA_BP_6 0xfc34 #define PLA_BP_7 0xfc36 #define PLA_BP_EN 0xfc38 #define USB_USB2PHY 0xb41e #define USB_SSPHYLINK2 0xb428 #define USB_U2P3_CTRL 0xb460 #define USB_CSR_DUMMY1 0xb464 #define USB_CSR_DUMMY2 0xb466 #define USB_DEV_STAT 0xb808 #define USB_CONNECT_TIMER 0xcbf8 #define USB_BURST_SIZE 0xcfc0 #define USB_USB_CTRL 0xd406 #define USB_PHY_CTRL 0xd408 #define USB_TX_AGG 0xd40a #define USB_RX_BUF_TH 0xd40c #define USB_USB_TIMER 0xd428 #define USB_RX_EARLY_TIMEOUT 0xd42c #define USB_RX_EARLY_SIZE 0xd42e #define USB_PM_CTRL_STATUS 0xd432 #define USB_TX_DMA 0xd434 #define USB_TOLERANCE 0xd490 #define USB_LPM_CTRL 0xd41a #define USB_UPS_CTRL 0xd800 #define USB_MISC_0 0xd81a #define USB_POWER_CUT 0xd80a #define USB_AFE_CTRL2 0xd824 #define USB_WDT11_CTRL 0xe43c #define USB_BP_BA 0xfc26 #define USB_BP_0 0xfc28 #define USB_BP_1 0xfc2a #define USB_BP_2 0xfc2c #define USB_BP_3 0xfc2e #define USB_BP_4 0xfc30 #define USB_BP_5 0xfc32 #define USB_BP_6 0xfc34 #define USB_BP_7 0xfc36 #define USB_BP_EN 0xfc38 /* OCP Registers */ #define OCP_ALDPS_CONFIG 0x2010 #define OCP_EEE_CONFIG1 0x2080 #define OCP_EEE_CONFIG2 0x2092 #define OCP_EEE_CONFIG3 0x2094 #define OCP_BASE_MII 0xa400 #define OCP_EEE_AR 0xa41a #define OCP_EEE_DATA 0xa41c #define OCP_PHY_STATUS 0xa420 #define OCP_POWER_CFG 0xa430 #define OCP_EEE_CFG 0xa432 #define OCP_SRAM_ADDR 0xa436 #define OCP_SRAM_DATA 0xa438 #define OCP_DOWN_SPEED 0xa442 #define OCP_EEE_ABLE 0xa5c4 #define OCP_EEE_ADV 0xa5d0 #define OCP_EEE_LPABLE 0xa5d2 #define OCP_PHY_STATE 0xa708 /* nway state for 8153 */ #define OCP_ADC_CFG 0xbc06 /* SRAM Register */ #define SRAM_LPF_CFG 0x8012 #define SRAM_10M_AMP1 0x8080 #define SRAM_10M_AMP2 0x8082 #define SRAM_IMPEDANCE 0x8084 /* PLA_RCR */ #define RCR_AAP 0x00000001 #define RCR_APM 0x00000002 #define RCR_AM 0x00000004 #define RCR_AB 0x00000008 #define RCR_ACPT_ALL (RCR_AAP | RCR_APM | RCR_AM | RCR_AB) /* PLA_RXFIFO_CTRL0 */ #define RXFIFO_THR1_NORMAL 0x00080002 #define RXFIFO_THR1_OOB 0x01800003 /* PLA_RXFIFO_CTRL1 */ #define RXFIFO_THR2_FULL 0x00000060 #define RXFIFO_THR2_HIGH 0x00000038 #define RXFIFO_THR2_OOB 0x0000004a #define RXFIFO_THR2_NORMAL 0x00a0 /* PLA_RXFIFO_CTRL2 */ #define RXFIFO_THR3_FULL 0x00000078 #define RXFIFO_THR3_HIGH 0x00000048 #define RXFIFO_THR3_OOB 0x0000005a #define RXFIFO_THR3_NORMAL 0x0110 /* PLA_TXFIFO_CTRL */ #define TXFIFO_THR_NORMAL 0x00400008 #define TXFIFO_THR_NORMAL2 0x01000008 /* PLA_DMY_REG0 */ #define ECM_ALDPS 0x0002 /* PLA_FMC */ #define FMC_FCR_MCU_EN 0x0001 /* PLA_EEEP_CR */ #define EEEP_CR_EEEP_TX 0x0002 /* PLA_WDT6_CTRL */ #define WDT6_SET_MODE 0x0010 /* PLA_TCR0 */ #define TCR0_TX_EMPTY 0x0800 #define TCR0_AUTO_FIFO 0x0080 /* PLA_TCR1 */ #define VERSION_MASK 0x7cf0 /* PLA_MTPS */ #define MTPS_JUMBO (12 * 1024 / 64) #define MTPS_DEFAULT (6 * 1024 / 64) /* PLA_RSTTALLY */ #define TALLY_RESET 0x0001 /* PLA_CR */ #define CR_RST 0x10 #define CR_RE 0x08 #define CR_TE 0x04 /* PLA_CRWECR */ #define CRWECR_NORAML 0x00 #define CRWECR_CONFIG 0xc0 /* PLA_OOB_CTRL */ #define NOW_IS_OOB 0x80 #define TXFIFO_EMPTY 0x20 #define RXFIFO_EMPTY 0x10 #define LINK_LIST_READY 0x02 #define DIS_MCU_CLROOB 0x01 #define FIFO_EMPTY (TXFIFO_EMPTY | RXFIFO_EMPTY) /* PLA_MISC_1 */ #define RXDY_GATED_EN 0x0008 /* PLA_SFF_STS_7 */ #define RE_INIT_LL 0x8000 #define MCU_BORW_EN 0x4000 /* PLA_CPCR */ #define CPCR_RX_VLAN 0x0040 /* PLA_CFG_WOL */ #define MAGIC_EN 0x0001 /* PLA_TEREDO_CFG */ #define TEREDO_SEL 0x8000 #define TEREDO_WAKE_MASK 0x7f00 #define TEREDO_RS_EVENT_MASK 0x00fe #define OOB_TEREDO_EN 0x0001 /* PAL_BDC_CR */ #define ALDPS_PROXY_MODE 0x0001 /* PLA_CONFIG34 */ #define LINK_ON_WAKE_EN 0x0010 #define LINK_OFF_WAKE_EN 0x0008 /* PLA_CONFIG5 */ #define BWF_EN 0x0040 #define MWF_EN 0x0020 #define UWF_EN 0x0010 #define LAN_WAKE_EN 0x0002 /* PLA_LED_FEATURE */ #define LED_MODE_MASK 0x0700 /* PLA_PHY_PWR */ #define TX_10M_IDLE_EN 0x0080 #define PFM_PWM_SWITCH 0x0040 /* PLA_MAC_PWR_CTRL */ #define D3_CLK_GATED_EN 0x00004000 #define MCU_CLK_RATIO 0x07010f07 #define MCU_CLK_RATIO_MASK 0x0f0f0f0f #define ALDPS_SPDWN_RATIO 0x0f87 /* PLA_MAC_PWR_CTRL2 */ #define EEE_SPDWN_RATIO 0x8007 /* PLA_MAC_PWR_CTRL3 */ #define PKT_AVAIL_SPDWN_EN 0x0100 #define SUSPEND_SPDWN_EN 0x0004 #define U1U2_SPDWN_EN 0x0002 #define L1_SPDWN_EN 0x0001 /* PLA_MAC_PWR_CTRL4 */ #define PWRSAVE_SPDWN_EN 0x1000 #define RXDV_SPDWN_EN 0x0800 #define TX10MIDLE_EN 0x0100 #define TP100_SPDWN_EN 0x0020 #define TP500_SPDWN_EN 0x0010 #define TP1000_SPDWN_EN 0x0008 #define EEE_SPDWN_EN 0x0001 /* PLA_GPHY_INTR_IMR */ #define GPHY_STS_MSK 0x0001 #define SPEED_DOWN_MSK 0x0002 #define SPDWN_RXDV_MSK 0x0004 #define SPDWN_LINKCHG_MSK 0x0008 /* PLA_PHYAR */ #define PHYAR_FLAG 0x80000000 /* PLA_EEE_CR */ #define EEE_RX_EN 0x0001 #define EEE_TX_EN 0x0002 /* PLA_BOOT_CTRL */ #define AUTOLOAD_DONE 0x0002 /* USB_USB2PHY */ #define USB2PHY_SUSPEND 0x0001 #define USB2PHY_L1 0x0002 /* USB_SSPHYLINK2 */ #define pwd_dn_scale_mask 0x3ffe #define pwd_dn_scale(x) ((x) << 1) /* USB_CSR_DUMMY1 */ #define DYNAMIC_BURST 0x0001 /* USB_CSR_DUMMY2 */ #define EP4_FULL_FC 0x0001 /* USB_DEV_STAT */ #define STAT_SPEED_MASK 0x0006 #define STAT_SPEED_HIGH 0x0000 #define STAT_SPEED_FULL 0x0002 /* USB_TX_AGG */ #define TX_AGG_MAX_THRESHOLD 0x03 /* USB_RX_BUF_TH */ #define RX_THR_SUPPER 0x0c350180 #define RX_THR_HIGH 0x7a120180 #define RX_THR_SLOW 0xffff0180 /* USB_TX_DMA */ #define TEST_MODE_DISABLE 0x00000001 #define TX_SIZE_ADJUST1 0x00000100 /* USB_UPS_CTRL */ #define POWER_CUT 0x0100 /* USB_PM_CTRL_STATUS */ #define RESUME_INDICATE 0x0001 /* USB_USB_CTRL */ #define RX_AGG_DISABLE 0x0010 #define RX_ZERO_EN 0x0080 /* USB_U2P3_CTRL */ #define U2P3_ENABLE 0x0001 /* USB_POWER_CUT */ #define PWR_EN 0x0001 #define PHASE2_EN 0x0008 /* USB_MISC_0 */ #define PCUT_STATUS 0x0001 /* USB_RX_EARLY_TIMEOUT */ #define COALESCE_SUPER 85000U #define COALESCE_HIGH 250000U #define COALESCE_SLOW 524280U /* USB_WDT11_CTRL */ #define TIMER11_EN 0x0001 /* USB_LPM_CTRL */ /* bit 4 ~ 5: fifo empty boundary */ #define FIFO_EMPTY_1FB 0x30 /* 0x1fb * 64 = 32448 bytes */ /* bit 2 ~ 3: LMP timer */ #define LPM_TIMER_MASK 0x0c #define LPM_TIMER_500MS 0x04 /* 500 ms */ #define LPM_TIMER_500US 0x0c /* 500 us */ #define ROK_EXIT_LPM 0x02 /* USB_AFE_CTRL2 */ #define SEN_VAL_MASK 0xf800 #define SEN_VAL_NORMAL 0xa000 #define SEL_RXIDLE 0x0100 /* OCP_ALDPS_CONFIG */ #define ENPWRSAVE 0x8000 #define ENPDNPS 0x0200 #define LINKENA 0x0100 #define DIS_SDSAVE 0x0010 /* OCP_PHY_STATUS */ #define PHY_STAT_MASK 0x0007 #define PHY_STAT_LAN_ON 3 #define PHY_STAT_PWRDN 5 /* OCP_POWER_CFG */ #define EEE_CLKDIV_EN 0x8000 #define EN_ALDPS 0x0004 #define EN_10M_PLLOFF 0x0001 /* OCP_EEE_CONFIG1 */ #define RG_TXLPI_MSK_HFDUP 0x8000 #define RG_MATCLR_EN 0x4000 #define EEE_10_CAP 0x2000 #define EEE_NWAY_EN 0x1000 #define TX_QUIET_EN 0x0200 #define RX_QUIET_EN 0x0100 #define sd_rise_time_mask 0x0070 #define sd_rise_time(x) (min(x, 7) << 4) /* bit 4 ~ 6 */ #define RG_RXLPI_MSK_HFDUP 0x0008 #define SDFALLTIME 0x0007 /* bit 0 ~ 2 */ /* OCP_EEE_CONFIG2 */ #define RG_LPIHYS_NUM 0x7000 /* bit 12 ~ 15 */ #define RG_DACQUIET_EN 0x0400 #define RG_LDVQUIET_EN 0x0200 #define RG_CKRSEL 0x0020 #define RG_EEEPRG_EN 0x0010 /* OCP_EEE_CONFIG3 */ #define fast_snr_mask 0xff80 #define fast_snr(x) (min(x, 0x1ff) << 7) /* bit 7 ~ 15 */ #define RG_LFS_SEL 0x0060 /* bit 6 ~ 5 */ #define MSK_PH 0x0006 /* bit 0 ~ 3 */ /* OCP_EEE_AR */ /* bit[15:14] function */ #define FUN_ADDR 0x0000 #define FUN_DATA 0x4000 /* bit[4:0] device addr */ /* OCP_EEE_CFG */ #define CTAP_SHORT_EN 0x0040 #define EEE10_EN 0x0010 /* OCP_DOWN_SPEED */ #define EN_10M_BGOFF 0x0080 /* OCP_PHY_STATE */ #define TXDIS_STATE 0x01 #define ABD_STATE 0x02 /* OCP_ADC_CFG */ #define CKADSEL_L 0x0100 #define ADC_EN 0x0080 #define EN_EMI_L 0x0040 /* SRAM_LPF_CFG */ #define LPF_AUTO_TUNE 0x8000 /* SRAM_10M_AMP1 */ #define GDAC_IB_UPALL 0x0008 /* SRAM_10M_AMP2 */ #define AMP_DN 0x0200 /* SRAM_IMPEDANCE */ #define RX_DRIVING_MASK 0x6000 enum rtl_register_content { _1000bps = 0x10, _100bps = 0x08, _10bps = 0x04, LINK_STATUS = 0x02, FULL_DUP = 0x01, }; #define RTL8152_MAX_TX 4 #define RTL8152_MAX_RX 10 #define INTBUFSIZE 2 #define CRC_SIZE 4 #define TX_ALIGN 4 #define RX_ALIGN 8 #define INTR_LINK 0x0004 #define RTL8152_REQT_READ 0xc0 #define RTL8152_REQT_WRITE 0x40 #define RTL8152_REQ_GET_REGS 0x05 #define RTL8152_REQ_SET_REGS 0x05 #define BYTE_EN_DWORD 0xff #define BYTE_EN_WORD 0x33 #define BYTE_EN_BYTE 0x11 #define BYTE_EN_SIX_BYTES 0x3f #define BYTE_EN_START_MASK 0x0f #define BYTE_EN_END_MASK 0xf0 #define RTL8153_MAX_PACKET 9216 /* 9K */ #define RTL8153_MAX_MTU (RTL8153_MAX_PACKET - VLAN_ETH_HLEN - VLAN_HLEN) #define RTL8152_RMS (VLAN_ETH_FRAME_LEN + VLAN_HLEN) #define RTL8153_RMS RTL8153_MAX_PACKET #define RTL8152_TX_TIMEOUT (5 * HZ) #define RTL8152_NAPI_WEIGHT 64 /* rtl8152 flags */ enum rtl8152_flags { RTL8152_UNPLUG = 0, RTL8152_SET_RX_MODE, WORK_ENABLE, RTL8152_LINK_CHG, SELECTIVE_SUSPEND, PHY_RESET, SCHEDULE_NAPI, }; /* Define these values to match your device */ #define VENDOR_ID_REALTEK 0x0bda #define VENDOR_ID_SAMSUNG 0x04e8 #define VENDOR_ID_LENOVO 0x17ef #define VENDOR_ID_NVIDIA 0x0955 #define MCU_TYPE_PLA 0x0100 #define MCU_TYPE_USB 0x0000 struct tally_counter { __le64 tx_packets; __le64 rx_packets; __le64 tx_errors; __le32 rx_errors; __le16 rx_missed; __le16 align_errors; __le32 tx_one_collision; __le32 tx_multi_collision; __le64 rx_unicast; __le64 rx_broadcast; __le32 rx_multicast; __le16 tx_aborted; __le16 tx_underrun; }; struct rx_desc { __le32 opts1; #define RX_LEN_MASK 0x7fff __le32 opts2; #define RD_UDP_CS BIT(23) #define RD_TCP_CS BIT(22) #define RD_IPV6_CS BIT(20) #define RD_IPV4_CS BIT(19) __le32 opts3; #define IPF BIT(23) /* IP checksum fail */ #define UDPF BIT(22) /* UDP checksum fail */ #define TCPF BIT(21) /* TCP checksum fail */ #define RX_VLAN_TAG BIT(16) __le32 opts4; __le32 opts5; __le32 opts6; }; struct tx_desc { __le32 opts1; #define TX_FS BIT(31) /* First segment of a packet */ #define TX_LS BIT(30) /* Final segment of a packet */ #define GTSENDV4 BIT(28) #define GTSENDV6 BIT(27) #define GTTCPHO_SHIFT 18 #define GTTCPHO_MAX 0x7fU #define TX_LEN_MAX 0x3ffffU __le32 opts2; #define UDP_CS BIT(31) /* Calculate UDP/IP checksum */ #define TCP_CS BIT(30) /* Calculate TCP/IP checksum */ #define IPV4_CS BIT(29) /* Calculate IPv4 checksum */ #define IPV6_CS BIT(28) /* Calculate IPv6 checksum */ #define MSS_SHIFT 17 #define MSS_MAX 0x7ffU #define TCPHO_SHIFT 17 #define TCPHO_MAX 0x7ffU #define TX_VLAN_TAG BIT(16) }; struct r8152; struct rx_agg { struct list_head list; struct urb *urb; struct r8152 *context; dma_addr_t transfer_dma; void *buffer; void *head; }; struct tx_agg { struct list_head list; struct urb *urb; struct r8152 *context; void *buffer; void *head; u32 skb_num; u32 skb_len; }; struct r8152 { unsigned long flags; struct usb_device *udev; struct napi_struct napi; struct usb_interface *intf; struct net_device *netdev; struct urb *intr_urb; struct tx_agg tx_info[RTL8152_MAX_TX]; struct rx_agg rx_info[RTL8152_MAX_RX]; struct list_head rx_done, tx_free; struct sk_buff_head tx_queue, rx_queue; spinlock_t rx_lock, tx_lock; struct delayed_work schedule; struct mii_if_info mii; struct mutex control; /* use for hw setting */ struct rtl_ops { void (*init)(struct r8152 *); int (*enable)(struct r8152 *); void (*disable)(struct r8152 *); void (*up)(struct r8152 *); void (*down)(struct r8152 *); void (*unload)(struct r8152 *); int (*eee_get)(struct r8152 *, struct ethtool_eee *); int (*eee_set)(struct r8152 *, struct ethtool_eee *); bool (*in_nway)(struct r8152 *); } rtl_ops; int intr_interval; u32 saved_wolopts; u32 msg_enable; u32 tx_qlen; u32 coalesce; u16 ocp_base; u8 *intr_buff; u8 version; }; enum rtl_version { RTL_VER_UNKNOWN = 0, RTL_VER_01, RTL_VER_02, RTL_VER_03, RTL_VER_04, RTL_VER_05, RTL_VER_06, RTL_VER_MAX }; enum tx_csum_stat { TX_CSUM_SUCCESS = 0, TX_CSUM_TSO, TX_CSUM_NONE }; /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). * The RTL chips use a 64 element hash table based on the Ethernet CRC. */ static const int multicast_filter_limit = 32; static unsigned int agg_buf_sz = 16384; #define RTL_LIMITED_TSO_SIZE (agg_buf_sz - sizeof(struct tx_desc) - \ VLAN_ETH_HLEN - VLAN_HLEN) static int get_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data) { int ret; void *tmp; tmp = kmalloc(size, GFP_KERNEL); if (!tmp) return -ENOMEM; ret = usb_control_msg(tp->udev, usb_rcvctrlpipe(tp->udev, 0), RTL8152_REQ_GET_REGS, RTL8152_REQT_READ, value, index, tmp, size, 500); memcpy(data, tmp, size); kfree(tmp); return ret; } static int set_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data) { int ret; void *tmp; tmp = kmemdup(data, size, GFP_KERNEL); if (!tmp) return -ENOMEM; ret = usb_control_msg(tp->udev, usb_sndctrlpipe(tp->udev, 0), RTL8152_REQ_SET_REGS, RTL8152_REQT_WRITE, value, index, tmp, size, 500); kfree(tmp); return ret; } static int generic_ocp_read(struct r8152 *tp, u16 index, u16 size, void *data, u16 type) { u16 limit = 64; int ret = 0; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return -ENODEV; /* both size and indix must be 4 bytes align */ if ((size & 3) || !size || (index & 3) || !data) return -EPERM; if ((u32)index + (u32)size > 0xffff) return -EPERM; while (size) { if (size > limit) { ret = get_registers(tp, index, type, limit, data); if (ret < 0) break; index += limit; data += limit; size -= limit; } else { ret = get_registers(tp, index, type, size, data); if (ret < 0) break; index += size; data += size; size = 0; break; } } if (ret == -ENODEV) set_bit(RTL8152_UNPLUG, &tp->flags); return ret; } static int generic_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data, u16 type) { int ret; u16 byteen_start, byteen_end, byen; u16 limit = 512; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return -ENODEV; /* both size and indix must be 4 bytes align */ if ((size & 3) || !size || (index & 3) || !data) return -EPERM; if ((u32)index + (u32)size > 0xffff) return -EPERM; byteen_start = byteen & BYTE_EN_START_MASK; byteen_end = byteen & BYTE_EN_END_MASK; byen = byteen_start | (byteen_start << 4); ret = set_registers(tp, index, type | byen, 4, data); if (ret < 0) goto error1; index += 4; data += 4; size -= 4; if (size) { size -= 4; while (size) { if (size > limit) { ret = set_registers(tp, index, type | BYTE_EN_DWORD, limit, data); if (ret < 0) goto error1; index += limit; data += limit; size -= limit; } else { ret = set_registers(tp, index, type | BYTE_EN_DWORD, size, data); if (ret < 0) goto error1; index += size; data += size; size = 0; break; } } byen = byteen_end | (byteen_end >> 4); ret = set_registers(tp, index, type | byen, 4, data); if (ret < 0) goto error1; } error1: if (ret == -ENODEV) set_bit(RTL8152_UNPLUG, &tp->flags); return ret; } static inline int pla_ocp_read(struct r8152 *tp, u16 index, u16 size, void *data) { return generic_ocp_read(tp, index, size, data, MCU_TYPE_PLA); } static inline int pla_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data) { return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_PLA); } static inline int usb_ocp_read(struct r8152 *tp, u16 index, u16 size, void *data) { return generic_ocp_read(tp, index, size, data, MCU_TYPE_USB); } static inline int usb_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data) { return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_USB); } static u32 ocp_read_dword(struct r8152 *tp, u16 type, u16 index) { __le32 data; generic_ocp_read(tp, index, sizeof(data), &data, type); return __le32_to_cpu(data); } static void ocp_write_dword(struct r8152 *tp, u16 type, u16 index, u32 data) { __le32 tmp = __cpu_to_le32(data); generic_ocp_write(tp, index, BYTE_EN_DWORD, sizeof(tmp), &tmp, type); } static u16 ocp_read_word(struct r8152 *tp, u16 type, u16 index) { u32 data; __le32 tmp; u8 shift = index & 2; index &= ~3; generic_ocp_read(tp, index, sizeof(tmp), &tmp, type); data = __le32_to_cpu(tmp); data >>= (shift * 8); data &= 0xffff; return (u16)data; } static void ocp_write_word(struct r8152 *tp, u16 type, u16 index, u32 data) { u32 mask = 0xffff; __le32 tmp; u16 byen = BYTE_EN_WORD; u8 shift = index & 2; data &= mask; if (index & 2) { byen <<= shift; mask <<= (shift * 8); data <<= (shift * 8); index &= ~3; } tmp = __cpu_to_le32(data); generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type); } static u8 ocp_read_byte(struct r8152 *tp, u16 type, u16 index) { u32 data; __le32 tmp; u8 shift = index & 3; index &= ~3; generic_ocp_read(tp, index, sizeof(tmp), &tmp, type); data = __le32_to_cpu(tmp); data >>= (shift * 8); data &= 0xff; return (u8)data; } static void ocp_write_byte(struct r8152 *tp, u16 type, u16 index, u32 data) { u32 mask = 0xff; __le32 tmp; u16 byen = BYTE_EN_BYTE; u8 shift = index & 3; data &= mask; if (index & 3) { byen <<= shift; mask <<= (shift * 8); data <<= (shift * 8); index &= ~3; } tmp = __cpu_to_le32(data); generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type); } static u16 ocp_reg_read(struct r8152 *tp, u16 addr) { u16 ocp_base, ocp_index; ocp_base = addr & 0xf000; if (ocp_base != tp->ocp_base) { ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base); tp->ocp_base = ocp_base; } ocp_index = (addr & 0x0fff) | 0xb000; return ocp_read_word(tp, MCU_TYPE_PLA, ocp_index); } static void ocp_reg_write(struct r8152 *tp, u16 addr, u16 data) { u16 ocp_base, ocp_index; ocp_base = addr & 0xf000; if (ocp_base != tp->ocp_base) { ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base); tp->ocp_base = ocp_base; } ocp_index = (addr & 0x0fff) | 0xb000; ocp_write_word(tp, MCU_TYPE_PLA, ocp_index, data); } static inline void r8152_mdio_write(struct r8152 *tp, u32 reg_addr, u32 value) { ocp_reg_write(tp, OCP_BASE_MII + reg_addr * 2, value); } static inline int r8152_mdio_read(struct r8152 *tp, u32 reg_addr) { return ocp_reg_read(tp, OCP_BASE_MII + reg_addr * 2); } static void sram_write(struct r8152 *tp, u16 addr, u16 data) { ocp_reg_write(tp, OCP_SRAM_ADDR, addr); ocp_reg_write(tp, OCP_SRAM_DATA, data); } static int read_mii_word(struct net_device *netdev, int phy_id, int reg) { struct r8152 *tp = netdev_priv(netdev); int ret; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return -ENODEV; if (phy_id != R8152_PHY_ID) return -EINVAL; ret = r8152_mdio_read(tp, reg); return ret; } static void write_mii_word(struct net_device *netdev, int phy_id, int reg, int val) { struct r8152 *tp = netdev_priv(netdev); if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; if (phy_id != R8152_PHY_ID) return; r8152_mdio_write(tp, reg, val); } static int r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags); static int rtl8152_set_mac_address(struct net_device *netdev, void *p) { struct r8152 *tp = netdev_priv(netdev); struct sockaddr *addr = p; int ret = -EADDRNOTAVAIL; if (!is_valid_ether_addr(addr->sa_data)) goto out1; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out1; mutex_lock(&tp->control); memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG); pla_ocp_write(tp, PLA_IDR, BYTE_EN_SIX_BYTES, 8, addr->sa_data); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out1: return ret; } static int set_ethernet_addr(struct r8152 *tp) { struct net_device *dev = tp->netdev; struct sockaddr sa; int ret; if (tp->version == RTL_VER_01) ret = pla_ocp_read(tp, PLA_IDR, 8, sa.sa_data); else ret = pla_ocp_read(tp, PLA_BACKUP, 8, sa.sa_data); if (ret < 0) { netif_err(tp, probe, dev, "Get ether addr fail\n"); } else if (!is_valid_ether_addr(sa.sa_data)) { netif_err(tp, probe, dev, "Invalid ether addr %pM\n", sa.sa_data); eth_hw_addr_random(dev); ether_addr_copy(sa.sa_data, dev->dev_addr); ret = rtl8152_set_mac_address(dev, &sa); netif_info(tp, probe, dev, "Random ether addr %pM\n", sa.sa_data); } else { if (tp->version == RTL_VER_01) ether_addr_copy(dev->dev_addr, sa.sa_data); else ret = rtl8152_set_mac_address(dev, &sa); } return ret; } static void read_bulk_callback(struct urb *urb) { struct net_device *netdev; int status = urb->status; struct rx_agg *agg; struct r8152 *tp; agg = urb->context; if (!agg) return; tp = agg->context; if (!tp) return; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; if (!test_bit(WORK_ENABLE, &tp->flags)) return; netdev = tp->netdev; /* When link down, the driver would cancel all bulks. */ /* This avoid the re-submitting bulk */ if (!netif_carrier_ok(netdev)) return; usb_mark_last_busy(tp->udev); switch (status) { case 0: mb(); if (urb->actual_length < (sizeof(struct rx_desc) + ETH_ZLEN)) { printk(KERN_INFO "r8152_read_bulk_callback: actual_length (%u) too short\n", urb->actual_length); break; } spin_lock(&tp->rx_lock); list_add_tail(&agg->list, &tp->rx_done); spin_unlock(&tp->rx_lock); napi_schedule(&tp->napi); return; case -ESHUTDOWN: set_bit(RTL8152_UNPLUG, &tp->flags); netif_device_detach(tp->netdev); return; case -ENOENT: return; /* the urb is in unlink state */ case -ETIME: if (net_ratelimit()) netdev_warn(netdev, "maybe reset is needed?\n"); break; default: if (net_ratelimit()) netdev_warn(netdev, "Rx status %d\n", status); break; } r8152_submit_rx(tp, agg, GFP_ATOMIC); } static void write_bulk_callback(struct urb *urb) { struct net_device_stats *stats; struct net_device *netdev; struct tx_agg *agg; struct r8152 *tp; int status = urb->status; agg = urb->context; if (!agg) return; tp = agg->context; if (!tp) return; netdev = tp->netdev; stats = &netdev->stats; if (status) { if (net_ratelimit()) netdev_warn(netdev, "Tx status %d\n", status); stats->tx_errors += agg->skb_num; } else { stats->tx_packets += agg->skb_num; stats->tx_bytes += agg->skb_len; } spin_lock(&tp->tx_lock); list_add_tail(&agg->list, &tp->tx_free); spin_unlock(&tp->tx_lock); usb_autopm_put_interface_async(tp->intf); if (!netif_carrier_ok(netdev)) return; if (!test_bit(WORK_ENABLE, &tp->flags)) return; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; if (!skb_queue_empty(&tp->tx_queue)) napi_schedule(&tp->napi); } static void intr_callback(struct urb *urb) { struct r8152 *tp; __le16 *d; int status = urb->status; int res; tp = urb->context; if (!tp) return; if (!test_bit(WORK_ENABLE, &tp->flags)) return; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; switch (status) { case 0: /* success */ break; case -ECONNRESET: /* unlink */ case -ESHUTDOWN: netif_device_detach(tp->netdev); case -ENOENT: case -EPROTO: netif_info(tp, intr, tp->netdev, "Stop submitting intr, status %d\n", status); return; case -EOVERFLOW: netif_info(tp, intr, tp->netdev, "intr status -EOVERFLOW\n"); goto resubmit; /* -EPIPE: should clear the halt */ default: netif_info(tp, intr, tp->netdev, "intr status %d\n", status); goto resubmit; } d = urb->transfer_buffer; if (INTR_LINK & __le16_to_cpu(d[0])) { if (!netif_carrier_ok(tp->netdev)) { set_bit(RTL8152_LINK_CHG, &tp->flags); schedule_delayed_work(&tp->schedule, 0); } } else { if (netif_carrier_ok(tp->netdev)) { set_bit(RTL8152_LINK_CHG, &tp->flags); schedule_delayed_work(&tp->schedule, 0); } } resubmit: res = usb_submit_urb(urb, GFP_ATOMIC); if (res == -ENODEV) { set_bit(RTL8152_UNPLUG, &tp->flags); netif_device_detach(tp->netdev); } else if (res) { netif_err(tp, intr, tp->netdev, "can't resubmit intr, status %d\n", res); } } static inline void *rx_agg_align(void *data) { return (void *)ALIGN((uintptr_t)data, RX_ALIGN); } static inline void *tx_agg_align(void *data) { return (void *)ALIGN((uintptr_t)data, TX_ALIGN); } static void free_all_mem(struct r8152 *tp) { int i; for (i = 0; i < RTL8152_MAX_RX; i++) { usb_free_urb(tp->rx_info[i].urb); tp->rx_info[i].urb = NULL; usb_free_coherent(tp->udev, agg_buf_sz, tp->rx_info[i].buffer, tp->rx_info[i].transfer_dma); tp->rx_info[i].buffer = NULL; tp->rx_info[i].head = NULL; } for (i = 0; i < RTL8152_MAX_TX; i++) { usb_free_urb(tp->tx_info[i].urb); tp->tx_info[i].urb = NULL; kfree(tp->tx_info[i].buffer); tp->tx_info[i].buffer = NULL; tp->tx_info[i].head = NULL; } usb_free_urb(tp->intr_urb); tp->intr_urb = NULL; kfree(tp->intr_buff); tp->intr_buff = NULL; } static int alloc_all_mem(struct r8152 *tp) { struct net_device *netdev = tp->netdev; struct usb_interface *intf = tp->intf; struct usb_host_interface *alt = intf->cur_altsetting; struct usb_host_endpoint *ep_intr = alt->endpoint + 2; struct urb *urb; int node, i; u8 *buf; node = netdev->dev.parent ? dev_to_node(netdev->dev.parent) : -1; spin_lock_init(&tp->rx_lock); spin_lock_init(&tp->tx_lock); INIT_LIST_HEAD(&tp->tx_free); skb_queue_head_init(&tp->tx_queue); skb_queue_head_init(&tp->rx_queue); for (i = 0; i < RTL8152_MAX_RX; i++) { dma_addr_t transfer_dma = 0; buf = usb_alloc_coherent(tp->udev, agg_buf_sz, GFP_KERNEL, &transfer_dma); if (!buf) goto err1; if (buf != rx_agg_align(buf)) { kfree(buf); buf = kmalloc_node(agg_buf_sz + RX_ALIGN, GFP_KERNEL, node); if (!buf) goto err1; } urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { kfree(buf); goto err1; } INIT_LIST_HEAD(&tp->rx_info[i].list); tp->rx_info[i].context = tp; tp->rx_info[i].urb = urb; tp->rx_info[i].transfer_dma = transfer_dma; tp->rx_info[i].buffer = buf; tp->rx_info[i].head = rx_agg_align(buf); } for (i = 0; i < RTL8152_MAX_TX; i++) { buf = kmalloc_node(agg_buf_sz, GFP_KERNEL, node); if (!buf) goto err1; if (buf != tx_agg_align(buf)) { kfree(buf); buf = kmalloc_node(agg_buf_sz + TX_ALIGN, GFP_KERNEL, node); if (!buf) goto err1; } urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { kfree(buf); goto err1; } INIT_LIST_HEAD(&tp->tx_info[i].list); tp->tx_info[i].context = tp; tp->tx_info[i].urb = urb; tp->tx_info[i].buffer = buf; tp->tx_info[i].head = tx_agg_align(buf); list_add_tail(&tp->tx_info[i].list, &tp->tx_free); } tp->intr_urb = usb_alloc_urb(0, GFP_KERNEL); if (!tp->intr_urb) goto err1; tp->intr_buff = kmalloc(INTBUFSIZE, GFP_KERNEL); if (!tp->intr_buff) goto err1; tp->intr_interval = (int)ep_intr->desc.bInterval; usb_fill_int_urb(tp->intr_urb, tp->udev, usb_rcvintpipe(tp->udev, 3), tp->intr_buff, INTBUFSIZE, intr_callback, tp, tp->intr_interval); return 0; err1: free_all_mem(tp); return -ENOMEM; } static struct tx_agg *r8152_get_tx_agg(struct r8152 *tp) { struct tx_agg *agg = NULL; unsigned long flags; if (list_empty(&tp->tx_free)) return NULL; spin_lock_irqsave(&tp->tx_lock, flags); if (!list_empty(&tp->tx_free)) { struct list_head *cursor; cursor = tp->tx_free.next; list_del_init(cursor); agg = list_entry(cursor, struct tx_agg, list); } spin_unlock_irqrestore(&tp->tx_lock, flags); return agg; } /* r8152_csum_workaround() * The hw limites the value the transport offset. When the offset is out of the * range, calculate the checksum by sw. */ static void r8152_csum_workaround(struct r8152 *tp, struct sk_buff *skb, struct sk_buff_head *list) { if (skb_shinfo(skb)->gso_size) { netdev_features_t features = tp->netdev->features; struct sk_buff_head seg_list; struct sk_buff *segs, *nskb; features &= ~(NETIF_F_SG | NETIF_F_IPV6_CSUM | NETIF_F_TSO6); segs = skb_gso_segment(skb, features); if (IS_ERR(segs) || !segs) goto drop; __skb_queue_head_init(&seg_list); do { nskb = segs; segs = segs->next; nskb->next = NULL; __skb_queue_tail(&seg_list, nskb); } while (segs); skb_queue_splice(&seg_list, list); dev_kfree_skb(skb); } else if (skb->ip_summed == CHECKSUM_PARTIAL) { if (skb_checksum_help(skb) < 0) goto drop; __skb_queue_head(list, skb); } else { struct net_device_stats *stats; drop: stats = &tp->netdev->stats; stats->tx_dropped++; dev_kfree_skb(skb); } } /* msdn_giant_send_check() * According to the document of microsoft, the TCP Pseudo Header excludes the * packet length for IPv6 TCP large packets. */ static int msdn_giant_send_check(struct sk_buff *skb) { const struct ipv6hdr *ipv6h; struct tcphdr *th; int ret; ret = skb_cow_head(skb, 0); if (ret) return ret; ipv6h = ipv6_hdr(skb); th = tcp_hdr(skb); th->check = 0; th->check = ~tcp_v6_check(0, &ipv6h->saddr, &ipv6h->daddr, 0); return ret; } static inline void rtl_tx_vlan_tag(struct tx_desc *desc, struct sk_buff *skb) { if (skb_vlan_tag_present(skb)) { u32 opts2; opts2 = TX_VLAN_TAG | swab16(skb_vlan_tag_get(skb)); desc->opts2 |= cpu_to_le32(opts2); } } static inline void rtl_rx_vlan_tag(struct rx_desc *desc, struct sk_buff *skb) { u32 opts2 = le32_to_cpu(desc->opts2); if (opts2 & RX_VLAN_TAG) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff)); } static int r8152_tx_csum(struct r8152 *tp, struct tx_desc *desc, struct sk_buff *skb, u32 len, u32 transport_offset) { u32 mss = skb_shinfo(skb)->gso_size; u32 opts1, opts2 = 0; int ret = TX_CSUM_SUCCESS; WARN_ON_ONCE(len > TX_LEN_MAX); opts1 = len | TX_FS | TX_LS; if (mss) { if (transport_offset > GTTCPHO_MAX) { netif_warn(tp, tx_err, tp->netdev, "Invalid transport offset 0x%x for TSO\n", transport_offset); ret = TX_CSUM_TSO; goto unavailable; } switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): opts1 |= GTSENDV4; break; case htons(ETH_P_IPV6): if (msdn_giant_send_check(skb)) { ret = TX_CSUM_TSO; goto unavailable; } opts1 |= GTSENDV6; break; default: WARN_ON_ONCE(1); break; } opts1 |= transport_offset << GTTCPHO_SHIFT; opts2 |= min(mss, MSS_MAX) << MSS_SHIFT; } else if (skb->ip_summed == CHECKSUM_PARTIAL) { u8 ip_protocol; if (transport_offset > TCPHO_MAX) { netif_warn(tp, tx_err, tp->netdev, "Invalid transport offset 0x%x\n", transport_offset); ret = TX_CSUM_NONE; goto unavailable; } switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): opts2 |= IPV4_CS; ip_protocol = ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): opts2 |= IPV6_CS; ip_protocol = ipv6_hdr(skb)->nexthdr; break; default: ip_protocol = IPPROTO_RAW; break; } if (ip_protocol == IPPROTO_TCP) opts2 |= TCP_CS; else if (ip_protocol == IPPROTO_UDP) opts2 |= UDP_CS; else WARN_ON_ONCE(1); opts2 |= transport_offset << TCPHO_SHIFT; } desc->opts2 = cpu_to_le32(opts2); desc->opts1 = cpu_to_le32(opts1); unavailable: return ret; } static int r8152_tx_agg_fill(struct r8152 *tp, struct tx_agg *agg) { struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue; int remain, ret; u8 *tx_data; __skb_queue_head_init(&skb_head); spin_lock(&tx_queue->lock); skb_queue_splice_init(tx_queue, &skb_head); spin_unlock(&tx_queue->lock); tx_data = agg->head; agg->skb_num = 0; agg->skb_len = 0; remain = agg_buf_sz; while (remain >= ETH_ZLEN + sizeof(struct tx_desc)) { struct tx_desc *tx_desc; struct sk_buff *skb; unsigned int len; u32 offset; skb = __skb_dequeue(&skb_head); if (!skb) break; len = skb->len + sizeof(*tx_desc); if (len > remain) { __skb_queue_head(&skb_head, skb); break; } tx_data = tx_agg_align(tx_data); tx_desc = (struct tx_desc *)tx_data; offset = (u32)skb_transport_offset(skb); if (r8152_tx_csum(tp, tx_desc, skb, skb->len, offset)) { r8152_csum_workaround(tp, skb, &skb_head); continue; } rtl_tx_vlan_tag(tx_desc, skb); tx_data += sizeof(*tx_desc); len = skb->len; if (skb_copy_bits(skb, 0, tx_data, len) < 0) { struct net_device_stats *stats = &tp->netdev->stats; stats->tx_dropped++; dev_kfree_skb_any(skb); tx_data -= sizeof(*tx_desc); continue; } tx_data += len; agg->skb_len += len; agg->skb_num++; dev_kfree_skb_any(skb); remain = agg_buf_sz - (int)(tx_agg_align(tx_data) - agg->head); } if (!skb_queue_empty(&skb_head)) { spin_lock(&tx_queue->lock); skb_queue_splice(&skb_head, tx_queue); spin_unlock(&tx_queue->lock); } netif_tx_lock(tp->netdev); if (netif_queue_stopped(tp->netdev) && skb_queue_len(&tp->tx_queue) < tp->tx_qlen) netif_wake_queue(tp->netdev); netif_tx_unlock(tp->netdev); ret = usb_autopm_get_interface_async(tp->intf); if (ret < 0) goto out_tx_fill; usb_fill_bulk_urb(agg->urb, tp->udev, usb_sndbulkpipe(tp->udev, 2), agg->head, (int)(tx_data - (u8 *)agg->head), (usb_complete_t)write_bulk_callback, agg); ret = usb_submit_urb(agg->urb, GFP_ATOMIC); if (ret < 0) usb_autopm_put_interface_async(tp->intf); out_tx_fill: return ret; } static u8 r8152_rx_csum(struct r8152 *tp, struct rx_desc *rx_desc) { u8 checksum = CHECKSUM_NONE; u32 opts2, opts3; if (tp->version == RTL_VER_01) goto return_result; opts2 = le32_to_cpu(rx_desc->opts2); opts3 = le32_to_cpu(rx_desc->opts3); if (opts2 & RD_IPV4_CS) { if (opts3 & IPF) checksum = CHECKSUM_NONE; else if ((opts2 & RD_UDP_CS) && (opts3 & UDPF)) checksum = CHECKSUM_NONE; else if ((opts2 & RD_TCP_CS) && (opts3 & TCPF)) checksum = CHECKSUM_NONE; else checksum = CHECKSUM_UNNECESSARY; } else if (opts2 & RD_IPV6_CS) { if ((opts2 & RD_UDP_CS) && !(opts3 & UDPF)) checksum = CHECKSUM_UNNECESSARY; else if ((opts2 & RD_TCP_CS) && !(opts3 & TCPF)) checksum = CHECKSUM_UNNECESSARY; } return_result: return checksum; } static void r8152_dump_rx_desc(struct rx_desc *rx_desc) { int rx_len = (le32_to_cpu(rx_desc->opts1) & RX_LEN_MASK); printk(KERN_INFO "%s: %08x %08x %08x %08x %08x %08x rx_len=%d\n", __func__, le32_to_cpu(rx_desc->opts1), le32_to_cpu(rx_desc->opts2), le32_to_cpu(rx_desc->opts3), le32_to_cpu(rx_desc->opts4), le32_to_cpu(rx_desc->opts5), le32_to_cpu(rx_desc->opts6), rx_len); } static int r8152_check_rx_desc(struct r8152 *tp, struct rx_desc *rx_desc) { u32 opts1, opts2, opts3, opts4, opts5, opts6; int pkt_len; if (tp->version == RTL_VER_01) return 0; /* rx_desc looks okay */ opts1 = le32_to_cpu(rx_desc->opts1); opts2 = le32_to_cpu(rx_desc->opts2); opts3 = le32_to_cpu(rx_desc->opts3); opts4 = le32_to_cpu(rx_desc->opts4); opts5 = le32_to_cpu(rx_desc->opts5); opts6 = le32_to_cpu(rx_desc->opts6); pkt_len = (opts1 & RX_LEN_MASK) - CRC_SIZE; if ( !opts1 || ((opts1 & 0x0ff3f000) != 0x04400000 && (opts1 & 0xffff0000) != 0x00040000 && (opts1 & 0xffff0000) != 0x00080000) || (opts2 & ~(BIT(30)|RD_UDP_CS|RD_TCP_CS|RD_IPV6_CS|RD_IPV4_CS)) || ((opts2 & RD_IPV6_CS) && (opts2 & RD_IPV4_CS)) || ((opts3 & 0xffff0000) & ~(IPF|UDPF|TCPF|RX_VLAN_TAG)) // 0xff170000 || (opts4 & 0x060cfff8) != 0x06000000 || (opts5 | opts6) || pkt_len > (tp->netdev->mtu + 42) ){ printk(KERN_WARNING "%s: rx_desc looks bad.\n", __func__); return -EIO; /* rx_desc looks bad */ } return 0; /* rx_desc looks okay */ } static int rx_bottom(struct r8152 *tp, int budget) { unsigned long flags; struct list_head *cursor, *next, rx_queue; int ret = 0, work_done = 0; if (!skb_queue_empty(&tp->rx_queue)) { while (work_done < budget) { struct sk_buff *skb = __skb_dequeue(&tp->rx_queue); struct net_device *netdev = tp->netdev; struct net_device_stats *stats = &netdev->stats; unsigned int pkt_len; if (!skb) break; pkt_len = skb->len; napi_gro_receive(&tp->napi, skb); work_done++; stats->rx_packets++; stats->rx_bytes += pkt_len; } } if (list_empty(&tp->rx_done)) goto out1; INIT_LIST_HEAD(&rx_queue); spin_lock_irqsave(&tp->rx_lock, flags); list_splice_init(&tp->rx_done, &rx_queue); spin_unlock_irqrestore(&tp->rx_lock, flags); list_for_each_safe(cursor, next, &rx_queue) { struct rx_desc *rx_desc; struct rx_agg *agg; int len_used = 0; struct urb *urb; u8 *rx_data; list_del_init(cursor); agg = list_entry(cursor, struct rx_agg, list); urb = agg->urb; if (urb->actual_length < (sizeof(struct rx_desc) + ETH_ZLEN)) { printk(KERN_WARNING "r8152_rx_bottom: URB too small: actual_length=%u\n", urb->actual_length); goto submit; } rx_desc = agg->head; rx_data = agg->head; mb(); while (urb->actual_length > len_used) { struct net_device *netdev = tp->netdev; struct net_device_stats *stats = &netdev->stats; unsigned int pkt_len; struct sk_buff *skb; if ((len_used + sizeof(struct rx_desc)) > urb->actual_length) { printk(KERN_WARNING "r8152_rx_bottom: offset=%u/%u too small for rx_desc\n", len_used, urb->actual_length); break; } len_used += sizeof(struct rx_desc); if (r8152_check_rx_desc(tp, rx_desc)) { printk(KERN_WARNING "r8152_rx_bottom: offset=%u/%u bad rx_desc\n", len_used - sizeof(struct rx_desc), urb->actual_length); r8152_dump_rx_desc(rx_desc); } pkt_len = le32_to_cpu(rx_desc->opts1) & RX_LEN_MASK; if (pkt_len < ETH_ZLEN) { printk(KERN_WARNING "r8152_rx_bottom: offset=%u/%u pkt_len(%u) < ETH_ZLEN\n", len_used, urb->actual_length, pkt_len); r8152_dump_rx_desc(rx_desc); break; } len_used += pkt_len; if (urb->actual_length < len_used) { printk(KERN_WARNING "r8152_rx_bottom: offset=%u/%u pkt_len(%u) exceeds buffer\n", len_used - pkt_len, urb->actual_length, pkt_len); r8152_dump_rx_desc(rx_desc); break; } pkt_len -= CRC_SIZE; rx_data += sizeof(struct rx_desc); skb = netdev_alloc_skb_ip_align(netdev, pkt_len); if (!skb) { printk(KERN_WARNING "r8152_rx_bottom: netdev_alloc_skb_ip_align(%u) failed\n", pkt_len); stats->rx_dropped++; goto find_next_rx; } skb->ip_summed = r8152_rx_csum(tp, rx_desc); memcpy(skb->data, rx_data, pkt_len); skb_put(skb, pkt_len); skb->protocol = eth_type_trans(skb, netdev); rtl_rx_vlan_tag(rx_desc, skb); if (work_done < budget) { napi_gro_receive(&tp->napi, skb); work_done++; stats->rx_packets++; stats->rx_bytes += pkt_len; } else { __skb_queue_tail(&tp->rx_queue, skb); } find_next_rx: rx_data = rx_agg_align(rx_data + pkt_len + CRC_SIZE); rx_desc = (struct rx_desc *)rx_data; len_used = (int)(rx_data - (u8 *)agg->head); } submit: if (!ret) { ret = r8152_submit_rx(tp, agg, GFP_ATOMIC); } else { urb->actual_length = 0; list_add_tail(&agg->list, next); } } if (!list_empty(&rx_queue)) { spin_lock_irqsave(&tp->rx_lock, flags); list_splice_tail(&rx_queue, &tp->rx_done); spin_unlock_irqrestore(&tp->rx_lock, flags); } out1: return work_done; } static void tx_bottom(struct r8152 *tp) { int res; do { struct tx_agg *agg; if (skb_queue_empty(&tp->tx_queue)) break; agg = r8152_get_tx_agg(tp); if (!agg) break; res = r8152_tx_agg_fill(tp, agg); if (res) { struct net_device *netdev = tp->netdev; if (res == -ENODEV) { set_bit(RTL8152_UNPLUG, &tp->flags); netif_device_detach(netdev); } else { struct net_device_stats *stats = &netdev->stats; unsigned long flags; netif_warn(tp, tx_err, netdev, "failed tx_urb %d\n", res); stats->tx_dropped += agg->skb_num; spin_lock_irqsave(&tp->tx_lock, flags); list_add_tail(&agg->list, &tp->tx_free); spin_unlock_irqrestore(&tp->tx_lock, flags); } } } while (res == 0); } static void bottom_half(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; if (!test_bit(WORK_ENABLE, &tp->flags)) return; /* When link down, the driver would cancel all bulks. */ /* This avoid the re-submitting bulk */ if (!netif_carrier_ok(tp->netdev)) return; clear_bit(SCHEDULE_NAPI, &tp->flags); tx_bottom(tp); } static int r8152_poll(struct napi_struct *napi, int budget) { struct r8152 *tp = container_of(napi, struct r8152, napi); int work_done; work_done = rx_bottom(tp, budget); bottom_half(tp); if (work_done < budget) { napi_complete(napi); if (!list_empty(&tp->rx_done)) napi_schedule(napi); } return work_done; } static int r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags) { int ret; /* The rx would be stopped, so skip submitting */ if (test_bit(RTL8152_UNPLUG, &tp->flags) || !test_bit(WORK_ENABLE, &tp->flags) || !netif_carrier_ok(tp->netdev)) return 0; /* FIXME: memory leak? */ usb_fill_bulk_urb(agg->urb, tp->udev, usb_rcvbulkpipe(tp->udev, 1), agg->head, agg_buf_sz, (usb_complete_t)read_bulk_callback, agg); agg->urb->transfer_dma = agg->transfer_dma; agg->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; mb(); ret = usb_submit_urb(agg->urb, mem_flags); if (ret == -ENODEV) { set_bit(RTL8152_UNPLUG, &tp->flags); netif_device_detach(tp->netdev); } else if (ret) { struct urb *urb = agg->urb; unsigned long flags; urb->actual_length = 0; spin_lock_irqsave(&tp->rx_lock, flags); list_add_tail(&agg->list, &tp->rx_done); spin_unlock_irqrestore(&tp->rx_lock, flags); netif_err(tp, rx_err, tp->netdev, "Couldn't submit rx[%p], ret = %d\n", agg, ret); napi_schedule(&tp->napi); } return ret; } static void rtl_drop_queued_tx(struct r8152 *tp) { struct net_device_stats *stats = &tp->netdev->stats; struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue; struct sk_buff *skb; if (skb_queue_empty(tx_queue)) return; __skb_queue_head_init(&skb_head); spin_lock_bh(&tx_queue->lock); skb_queue_splice_init(tx_queue, &skb_head); spin_unlock_bh(&tx_queue->lock); while ((skb = __skb_dequeue(&skb_head))) { dev_kfree_skb(skb); stats->tx_dropped++; } } static void rtl8152_tx_timeout(struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); netif_warn(tp, tx_err, netdev, "Tx timeout\n"); usb_queue_reset_device(tp->intf); } static void rtl8152_set_rx_mode(struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); if (netif_carrier_ok(netdev)) { set_bit(RTL8152_SET_RX_MODE, &tp->flags); schedule_delayed_work(&tp->schedule, 0); } } static void _rtl8152_set_rx_mode(struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); u32 mc_filter[2]; /* Multicast hash filter */ __le32 tmp[2]; u32 ocp_data; clear_bit(RTL8152_SET_RX_MODE, &tp->flags); netif_stop_queue(netdev); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data &= ~RCR_ACPT_ALL; ocp_data |= RCR_AB | RCR_APM; if (netdev->flags & IFF_PROMISC) { /* Unconditionally log net taps. */ netif_notice(tp, link, netdev, "Promiscuous mode enabled\n"); ocp_data |= RCR_AM | RCR_AAP; mc_filter[1] = 0xffffffff; mc_filter[0] = 0xffffffff; } else if ((netdev_mc_count(netdev) > multicast_filter_limit) || (netdev->flags & IFF_ALLMULTI)) { /* Too many to filter perfectly -- accept all multicasts. */ ocp_data |= RCR_AM; mc_filter[1] = 0xffffffff; mc_filter[0] = 0xffffffff; } else { struct netdev_hw_addr *ha; mc_filter[1] = 0; mc_filter[0] = 0; netdev_for_each_mc_addr(ha, netdev) { int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); ocp_data |= RCR_AM; } } tmp[0] = __cpu_to_le32(swab32(mc_filter[1])); tmp[1] = __cpu_to_le32(swab32(mc_filter[0])); pla_ocp_write(tp, PLA_MAR, BYTE_EN_DWORD, sizeof(tmp), tmp); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); netif_wake_queue(netdev); } static netdev_features_t rtl8152_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { u32 mss = skb_shinfo(skb)->gso_size; int max_offset = mss ? GTTCPHO_MAX : TCPHO_MAX; int offset = skb_transport_offset(skb); if ((mss || skb->ip_summed == CHECKSUM_PARTIAL) && offset > max_offset) features &= ~(NETIF_F_ALL_CSUM | NETIF_F_GSO_MASK); else if ((skb->len + sizeof(struct tx_desc)) > agg_buf_sz) features &= ~NETIF_F_GSO_MASK; return features; } static netdev_tx_t rtl8152_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); skb_tx_timestamp(skb); skb_queue_tail(&tp->tx_queue, skb); if (!list_empty(&tp->tx_free)) { if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) { set_bit(SCHEDULE_NAPI, &tp->flags); schedule_delayed_work(&tp->schedule, 0); } else { usb_mark_last_busy(tp->udev); napi_schedule(&tp->napi); } } else if (skb_queue_len(&tp->tx_queue) > tp->tx_qlen) { netif_stop_queue(netdev); } return NETDEV_TX_OK; } static void r8152b_reset_packet_filter(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_FMC); ocp_data &= ~FMC_FCR_MCU_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data); ocp_data |= FMC_FCR_MCU_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data); } static void rtl8152_nic_reset(struct r8152 *tp) { int i; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, CR_RST); for (i = 0; i < 1000; i++) { if (!(ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR) & CR_RST)) break; usleep_range(100, 400); } } static void set_tx_qlen(struct r8152 *tp) { struct net_device *netdev = tp->netdev; tp->tx_qlen = agg_buf_sz / (netdev->mtu + VLAN_ETH_HLEN + VLAN_HLEN + sizeof(struct tx_desc)); } static inline u8 rtl8152_get_speed(struct r8152 *tp) { return ocp_read_byte(tp, MCU_TYPE_PLA, PLA_PHYSTATUS); } static void rtl_set_eee_plus(struct r8152 *tp) { u32 ocp_data; u8 speed; speed = rtl8152_get_speed(tp); if (speed & _10bps) { ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR); ocp_data |= EEEP_CR_EEEP_TX; ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data); } else { ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR); ocp_data &= ~EEEP_CR_EEEP_TX; ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data); } } static void rxdy_gated_en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MISC_1); if (enable) ocp_data |= RXDY_GATED_EN; else ocp_data &= ~RXDY_GATED_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MISC_1, ocp_data); } static int rtl_start_rx(struct r8152 *tp) { int i, ret = 0; INIT_LIST_HEAD(&tp->rx_done); for (i = 0; i < RTL8152_MAX_RX; i++) { INIT_LIST_HEAD(&tp->rx_info[i].list); ret = r8152_submit_rx(tp, &tp->rx_info[i], GFP_KERNEL); if (ret) break; } if (ret && ++i < RTL8152_MAX_RX) { struct list_head rx_queue; unsigned long flags; INIT_LIST_HEAD(&rx_queue); do { struct rx_agg *agg = &tp->rx_info[i++]; struct urb *urb = agg->urb; urb->actual_length = 0; list_add_tail(&agg->list, &rx_queue); } while (i < RTL8152_MAX_RX); spin_lock_irqsave(&tp->rx_lock, flags); list_splice_tail(&rx_queue, &tp->rx_done); spin_unlock_irqrestore(&tp->rx_lock, flags); } return ret; } static int rtl_stop_rx(struct r8152 *tp) { int i; for (i = 0; i < RTL8152_MAX_RX; i++) usb_kill_urb(tp->rx_info[i].urb); while (!skb_queue_empty(&tp->rx_queue)) dev_kfree_skb(__skb_dequeue(&tp->rx_queue)); return 0; } static int rtl_enable(struct r8152 *tp) { u32 ocp_data; r8152b_reset_packet_filter(tp); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR); ocp_data |= CR_RE | CR_TE; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, ocp_data); rxdy_gated_en(tp, false); return 0; } static int rtl8152_enable(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) return -ENODEV; set_tx_qlen(tp); rtl_set_eee_plus(tp); return rtl_enable(tp); } static void r8153_set_rx_early_timeout(struct r8152 *tp) { u32 ocp_data = tp->coalesce / 8; ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT, ocp_data); } static void r8153_set_rx_early_size(struct r8152 *tp) { u32 mtu = tp->netdev->mtu; u32 ocp_data = (agg_buf_sz - mtu - VLAN_ETH_HLEN - VLAN_HLEN) / 4; ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE, ocp_data); } static int rtl8153_enable(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) return -ENODEV; usb_disable_lpm(tp->udev); set_tx_qlen(tp); rtl_set_eee_plus(tp); r8153_set_rx_early_timeout(tp); r8153_set_rx_early_size(tp); return rtl_enable(tp); } static void rtl_disable(struct r8152 *tp) { u32 ocp_data; int i; if (test_bit(RTL8152_UNPLUG, &tp->flags)) { rtl_drop_queued_tx(tp); return; } ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data &= ~RCR_ACPT_ALL; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); rtl_drop_queued_tx(tp); for (i = 0; i < RTL8152_MAX_TX; i++) usb_kill_urb(tp->tx_info[i].urb); rxdy_gated_en(tp, true); for (i = 0; i < 1000; i++) { ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); if ((ocp_data & FIFO_EMPTY) == FIFO_EMPTY) break; usleep_range(1000, 2000); } for (i = 0; i < 1000; i++) { if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0) & TCR0_TX_EMPTY) break; usleep_range(1000, 2000); } rtl_stop_rx(tp); rtl8152_nic_reset(tp); } static void r8152_power_cut_en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_UPS_CTRL); if (enable) ocp_data |= POWER_CUT; else ocp_data &= ~POWER_CUT; ocp_write_word(tp, MCU_TYPE_USB, USB_UPS_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS); ocp_data &= ~RESUME_INDICATE; ocp_write_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS, ocp_data); } static void rtl_rx_vlan_en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CPCR); if (enable) ocp_data |= CPCR_RX_VLAN; else ocp_data &= ~CPCR_RX_VLAN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CPCR, ocp_data); } static int rtl8152_set_features(struct net_device *dev, netdev_features_t features) { netdev_features_t changed = features ^ dev->features; struct r8152 *tp = netdev_priv(dev); int ret; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); if (changed & NETIF_F_HW_VLAN_CTAG_RX) { if (features & NETIF_F_HW_VLAN_CTAG_RX) rtl_rx_vlan_en(tp, true); else rtl_rx_vlan_en(tp, false); } mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } #define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST) static u32 __rtl_get_wol(struct r8152 *tp) { u32 ocp_data; u32 wolopts = 0; ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CONFIG5); if (!(ocp_data & LAN_WAKE_EN)) return 0; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34); if (ocp_data & LINK_ON_WAKE_EN) wolopts |= WAKE_PHY; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5); if (ocp_data & UWF_EN) wolopts |= WAKE_UCAST; if (ocp_data & BWF_EN) wolopts |= WAKE_BCAST; if (ocp_data & MWF_EN) wolopts |= WAKE_MCAST; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL); if (ocp_data & MAGIC_EN) wolopts |= WAKE_MAGIC; return wolopts; } static void __rtl_set_wol(struct r8152 *tp, u32 wolopts) { u32 ocp_data; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34); ocp_data &= ~LINK_ON_WAKE_EN; if (wolopts & WAKE_PHY) ocp_data |= LINK_ON_WAKE_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5); ocp_data &= ~(UWF_EN | BWF_EN | MWF_EN | LAN_WAKE_EN); if (wolopts & WAKE_UCAST) ocp_data |= UWF_EN; if (wolopts & WAKE_BCAST) ocp_data |= BWF_EN; if (wolopts & WAKE_MCAST) ocp_data |= MWF_EN; if (wolopts & WAKE_ANY) ocp_data |= LAN_WAKE_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG5, ocp_data); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL); ocp_data &= ~MAGIC_EN; if (wolopts & WAKE_MAGIC) ocp_data |= MAGIC_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL, ocp_data); if (wolopts & WAKE_ANY) device_set_wakeup_enable(&tp->udev->dev, true); else device_set_wakeup_enable(&tp->udev->dev, false); } static void r8153_u1u2en(struct r8152 *tp, bool enable) { u8 u1u2[8]; if (enable) memset(u1u2, 0xff, sizeof(u1u2)); else memset(u1u2, 0x00, sizeof(u1u2)); usb_ocp_write(tp, USB_TOLERANCE, BYTE_EN_SIX_BYTES, sizeof(u1u2), u1u2); } static void r8153_u2p3en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL); if (enable && tp->version != RTL_VER_03 && tp->version != RTL_VER_04) ocp_data |= U2P3_ENABLE; else ocp_data &= ~U2P3_ENABLE; ocp_write_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL, ocp_data); } static void r8153_power_cut_en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_POWER_CUT); if (enable) ocp_data |= PWR_EN | PHASE2_EN; else ocp_data &= ~(PWR_EN | PHASE2_EN); ocp_write_word(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0); ocp_data &= ~PCUT_STATUS; ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data); } static bool rtl_can_wakeup(struct r8152 *tp) { struct usb_device *udev = tp->udev; return (udev->actconfig->desc.bmAttributes & USB_CONFIG_ATT_WAKEUP); } static void rtl_runtime_suspend_enable(struct r8152 *tp, bool enable) { if (enable) { u32 ocp_data; r8153_u1u2en(tp, false); r8153_u2p3en(tp, false); __rtl_set_wol(tp, WAKE_ANY); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34); ocp_data |= LINK_OFF_WAKE_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); } else { __rtl_set_wol(tp, tp->saved_wolopts); r8153_u2p3en(tp, true); r8153_u1u2en(tp, true); } } static void rtl_phy_reset(struct r8152 *tp) { u16 data; int i; clear_bit(PHY_RESET, &tp->flags); data = r8152_mdio_read(tp, MII_BMCR); /* don't reset again before the previous one complete */ if (data & BMCR_RESET) return; data |= BMCR_RESET; r8152_mdio_write(tp, MII_BMCR, data); for (i = 0; i < 50; i++) { msleep(20); if ((r8152_mdio_read(tp, MII_BMCR) & BMCR_RESET) == 0) break; } } static void r8153_teredo_off(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG); ocp_data &= ~(TEREDO_SEL | TEREDO_RS_EVENT_MASK | OOB_TEREDO_EN); ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data); ocp_write_word(tp, MCU_TYPE_PLA, PLA_WDT6_CTRL, WDT6_SET_MODE); ocp_write_word(tp, MCU_TYPE_PLA, PLA_REALWOW_TIMER, 0); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TEREDO_TIMER, 0); } static void r8152b_disable_aldps(struct r8152 *tp) { ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPDNPS | LINKENA | DIS_SDSAVE); msleep(20); } static inline void r8152b_enable_aldps(struct r8152 *tp) { ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPWRSAVE | ENPDNPS | LINKENA | DIS_SDSAVE); } static void rtl8152_disable(struct r8152 *tp) { r8152b_disable_aldps(tp); rtl_disable(tp); r8152b_enable_aldps(tp); } static void r8152b_hw_phy_cfg(struct r8152 *tp) { u16 data; data = r8152_mdio_read(tp, MII_BMCR); if (data & BMCR_PDOWN) { data &= ~BMCR_PDOWN; r8152_mdio_write(tp, MII_BMCR, data); } set_bit(PHY_RESET, &tp->flags); } static void r8152b_exit_oob(struct r8152 *tp) { u32 ocp_data; int i; ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data &= ~RCR_ACPT_ALL; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); rxdy_gated_en(tp, true); r8153_teredo_off(tp); r8152b_hw_phy_cfg(tp); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, 0x00); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data &= ~NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data &= ~MCU_BORW_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); for (i = 0; i < 1000; i++) { ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); if (ocp_data & LINK_LIST_READY) break; usleep_range(1000, 2000); } ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data |= RE_INIT_LL; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); for (i = 0; i < 1000; i++) { ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); if (ocp_data & LINK_LIST_READY) break; usleep_range(1000, 2000); } rtl8152_nic_reset(tp); /* rx share fifo credit full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL); if (tp->udev->speed == USB_SPEED_FULL || tp->udev->speed == USB_SPEED_LOW) { /* rx share fifo credit near full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_FULL); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_FULL); } else { /* rx share fifo credit near full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_HIGH); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_HIGH); } /* TX share fifo free credit full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL); ocp_write_byte(tp, MCU_TYPE_USB, USB_TX_AGG, TX_AGG_MAX_THRESHOLD); ocp_write_dword(tp, MCU_TYPE_USB, USB_RX_BUF_TH, RX_THR_HIGH); ocp_write_dword(tp, MCU_TYPE_USB, USB_TX_DMA, TEST_MODE_DISABLE | TX_SIZE_ADJUST1); rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0); ocp_data |= TCR0_AUTO_FIFO; ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data); } static void r8152b_enter_oob(struct r8152 *tp) { u32 ocp_data; int i; ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data &= ~NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_OOB); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_OOB); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_OOB); rtl_disable(tp); for (i = 0; i < 1000; i++) { ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); if (ocp_data & LINK_LIST_READY) break; usleep_range(1000, 2000); } ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data |= RE_INIT_LL; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); for (i = 0; i < 1000; i++) { ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); if (ocp_data & LINK_LIST_READY) break; usleep_range(1000, 2000); } ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS); rtl_rx_vlan_en(tp, true); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PAL_BDC_CR); ocp_data |= ALDPS_PROXY_MODE; ocp_write_word(tp, MCU_TYPE_PLA, PAL_BDC_CR, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); rxdy_gated_en(tp, false); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data |= RCR_APM | RCR_AM | RCR_AB; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); } static void r8153_hw_phy_cfg(struct r8152 *tp) { u32 ocp_data; u16 data; if (tp->version == RTL_VER_03 || tp->version == RTL_VER_04 || tp->version == RTL_VER_05) ocp_reg_write(tp, OCP_ADC_CFG, CKADSEL_L | ADC_EN | EN_EMI_L); data = r8152_mdio_read(tp, MII_BMCR); if (data & BMCR_PDOWN) { data &= ~BMCR_PDOWN; r8152_mdio_write(tp, MII_BMCR, data); } if (tp->version == RTL_VER_03) { data = ocp_reg_read(tp, OCP_EEE_CFG); data &= ~CTAP_SHORT_EN; ocp_reg_write(tp, OCP_EEE_CFG, data); } data = ocp_reg_read(tp, OCP_POWER_CFG); data |= EEE_CLKDIV_EN; ocp_reg_write(tp, OCP_POWER_CFG, data); data = ocp_reg_read(tp, OCP_DOWN_SPEED); data |= EN_10M_BGOFF; ocp_reg_write(tp, OCP_DOWN_SPEED, data); data = ocp_reg_read(tp, OCP_POWER_CFG); data |= EN_10M_PLLOFF; ocp_reg_write(tp, OCP_POWER_CFG, data); sram_write(tp, SRAM_IMPEDANCE, 0x0b13); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR); ocp_data |= PFM_PWM_SWITCH; ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data); /* Enable LPF corner auto tune */ sram_write(tp, SRAM_LPF_CFG, 0xf70f); /* Adjust 10M Amplitude */ sram_write(tp, SRAM_10M_AMP1, 0x00af); sram_write(tp, SRAM_10M_AMP2, 0x0208); set_bit(PHY_RESET, &tp->flags); } static void r8153_first_init(struct r8152 *tp) { u32 ocp_data; int i; rxdy_gated_en(tp, true); r8153_teredo_off(tp); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data &= ~RCR_ACPT_ALL; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); r8153_hw_phy_cfg(tp); rtl8152_nic_reset(tp); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data &= ~NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data &= ~MCU_BORW_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); for (i = 0; i < 1000; i++) { ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); if (ocp_data & LINK_LIST_READY) break; usleep_range(1000, 2000); } ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data |= RE_INIT_LL; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); for (i = 0; i < 1000; i++) { ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); if (ocp_data & LINK_LIST_READY) break; usleep_range(1000, 2000); } rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8153_RMS); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_MTPS, MTPS_JUMBO); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0); ocp_data |= TCR0_AUTO_FIFO; ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data); rtl8152_nic_reset(tp); /* rx share fifo credit full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_NORMAL); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_NORMAL); /* TX share fifo free credit full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL2); /* rx aggregation */ ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL); ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN); ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data); } static void r8153_enter_oob(struct r8152 *tp) { u32 ocp_data; int i; ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data &= ~NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); rtl_disable(tp); for (i = 0; i < 1000; i++) { ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); if (ocp_data & LINK_LIST_READY) break; usleep_range(1000, 2000); } ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data |= RE_INIT_LL; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); for (i = 0; i < 1000; i++) { ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); if (ocp_data & LINK_LIST_READY) break; usleep_range(1000, 2000); } ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8153_RMS); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG); ocp_data &= ~TEREDO_WAKE_MASK; ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data); rtl_rx_vlan_en(tp, true); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PAL_BDC_CR); ocp_data |= ALDPS_PROXY_MODE; ocp_write_word(tp, MCU_TYPE_PLA, PAL_BDC_CR, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); rxdy_gated_en(tp, false); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data |= RCR_APM | RCR_AM | RCR_AB; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); } static void r8153_disable_aldps(struct r8152 *tp) { u16 data; data = ocp_reg_read(tp, OCP_POWER_CFG); data &= ~EN_ALDPS; ocp_reg_write(tp, OCP_POWER_CFG, data); msleep(20); } static void r8153_enable_aldps(struct r8152 *tp) { u16 data; data = ocp_reg_read(tp, OCP_POWER_CFG); data |= EN_ALDPS; ocp_reg_write(tp, OCP_POWER_CFG, data); } static void rtl8153_disable(struct r8152 *tp) { r8153_disable_aldps(tp); rtl_disable(tp); r8153_enable_aldps(tp); usb_enable_lpm(tp->udev); } static int rtl8152_set_speed(struct r8152 *tp, u8 autoneg, u16 speed, u8 duplex) { u16 bmcr, anar, gbcr; int ret = 0; cancel_delayed_work_sync(&tp->schedule); anar = r8152_mdio_read(tp, MII_ADVERTISE); anar &= ~(ADVERTISE_10HALF | ADVERTISE_10FULL | ADVERTISE_100HALF | ADVERTISE_100FULL); if (tp->mii.supports_gmii) { gbcr = r8152_mdio_read(tp, MII_CTRL1000); gbcr &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF); } else { gbcr = 0; } if (autoneg == AUTONEG_DISABLE) { if (speed == SPEED_10) { bmcr = 0; anar |= ADVERTISE_10HALF | ADVERTISE_10FULL; } else if (speed == SPEED_100) { bmcr = BMCR_SPEED100; anar |= ADVERTISE_100HALF | ADVERTISE_100FULL; } else if (speed == SPEED_1000 && tp->mii.supports_gmii) { bmcr = BMCR_SPEED1000; gbcr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF; } else { ret = -EINVAL; goto out; } if (duplex == DUPLEX_FULL) bmcr |= BMCR_FULLDPLX; } else { if (speed == SPEED_10) { if (duplex == DUPLEX_FULL) anar |= ADVERTISE_10HALF | ADVERTISE_10FULL; else anar |= ADVERTISE_10HALF; } else if (speed == SPEED_100) { if (duplex == DUPLEX_FULL) { anar |= ADVERTISE_10HALF | ADVERTISE_10FULL; anar |= ADVERTISE_100HALF | ADVERTISE_100FULL; } else { anar |= ADVERTISE_10HALF; anar |= ADVERTISE_100HALF; } } else if (speed == SPEED_1000 && tp->mii.supports_gmii) { if (duplex == DUPLEX_FULL) { anar |= ADVERTISE_10HALF | ADVERTISE_10FULL; anar |= ADVERTISE_100HALF | ADVERTISE_100FULL; gbcr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF; } else { anar |= ADVERTISE_10HALF; anar |= ADVERTISE_100HALF; gbcr |= ADVERTISE_1000HALF; } } else { ret = -EINVAL; goto out; } bmcr = BMCR_ANENABLE | BMCR_ANRESTART; } if (test_bit(PHY_RESET, &tp->flags)) bmcr |= BMCR_RESET; if (tp->mii.supports_gmii) r8152_mdio_write(tp, MII_CTRL1000, gbcr); r8152_mdio_write(tp, MII_ADVERTISE, anar); r8152_mdio_write(tp, MII_BMCR, bmcr); if (test_bit(PHY_RESET, &tp->flags)) { int i; clear_bit(PHY_RESET, &tp->flags); for (i = 0; i < 50; i++) { msleep(20); if ((r8152_mdio_read(tp, MII_BMCR) & BMCR_RESET) == 0) break; } } out: return ret; } static void rtl8152_up(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; r8152b_disable_aldps(tp); r8152b_exit_oob(tp); r8152b_enable_aldps(tp); } static void rtl8152_down(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) { rtl_drop_queued_tx(tp); return; } r8152_power_cut_en(tp, false); r8152b_disable_aldps(tp); r8152b_enter_oob(tp); r8152b_enable_aldps(tp); } static void rtl8153_up(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; r8153_u1u2en(tp, false); r8153_disable_aldps(tp); r8153_first_init(tp); r8153_enable_aldps(tp); r8153_u2p3en(tp, true); r8153_u1u2en(tp, true); usb_enable_lpm(tp->udev); } static void rtl8153_down(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) { rtl_drop_queued_tx(tp); return; } r8153_u1u2en(tp, false); r8153_u2p3en(tp, false); r8153_power_cut_en(tp, false); r8153_disable_aldps(tp); r8153_enter_oob(tp); r8153_enable_aldps(tp); } static bool rtl8152_in_nway(struct r8152 *tp) { u16 nway_state; ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, 0x2000); tp->ocp_base = 0x2000; ocp_write_byte(tp, MCU_TYPE_PLA, 0xb014, 0x4c); /* phy state */ nway_state = ocp_read_word(tp, MCU_TYPE_PLA, 0xb01a); /* bit 15: TXDIS_STATE, bit 14: ABD_STATE */ if (nway_state & 0xc000) return false; else return true; } static bool rtl8153_in_nway(struct r8152 *tp) { u16 phy_state = ocp_reg_read(tp, OCP_PHY_STATE) & 0xff; if (phy_state == TXDIS_STATE || phy_state == ABD_STATE) return false; else return true; } static void set_carrier(struct r8152 *tp) { struct net_device *netdev = tp->netdev; u8 speed; clear_bit(RTL8152_LINK_CHG, &tp->flags); speed = rtl8152_get_speed(tp); if (speed & LINK_STATUS) { if (!netif_carrier_ok(netdev)) { tp->rtl_ops.enable(tp); set_bit(RTL8152_SET_RX_MODE, &tp->flags); napi_disable(&tp->napi); netif_carrier_on(netdev); rtl_start_rx(tp); napi_enable(&tp->napi); } } else { if (netif_carrier_ok(netdev)) { netif_carrier_off(netdev); napi_disable(&tp->napi); tp->rtl_ops.disable(tp); napi_enable(&tp->napi); } } } static void rtl_work_func_t(struct work_struct *work) { struct r8152 *tp = container_of(work, struct r8152, schedule.work); /* If the device is unplugged or !netif_running(), the workqueue * doesn't need to wake the device, and could return directly. */ if (test_bit(RTL8152_UNPLUG, &tp->flags) || !netif_running(tp->netdev)) return; if (usb_autopm_get_interface(tp->intf) < 0) return; if (!test_bit(WORK_ENABLE, &tp->flags)) goto out1; if (!mutex_trylock(&tp->control)) { schedule_delayed_work(&tp->schedule, 0); goto out1; } if (test_bit(RTL8152_LINK_CHG, &tp->flags)) set_carrier(tp); if (test_bit(RTL8152_SET_RX_MODE, &tp->flags)) _rtl8152_set_rx_mode(tp->netdev); /* don't schedule napi before linking */ if (test_bit(SCHEDULE_NAPI, &tp->flags) && netif_carrier_ok(tp->netdev)) { clear_bit(SCHEDULE_NAPI, &tp->flags); napi_schedule(&tp->napi); } if (test_bit(PHY_RESET, &tp->flags)) rtl_phy_reset(tp); mutex_unlock(&tp->control); out1: usb_autopm_put_interface(tp->intf); } static int rtl8152_open(struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); int res = 0; res = alloc_all_mem(tp); if (res) goto out; netif_carrier_off(netdev); res = usb_autopm_get_interface(tp->intf); if (res < 0) { free_all_mem(tp); goto out; } mutex_lock(&tp->control); tp->rtl_ops.up(tp); rtl8152_set_speed(tp, AUTONEG_ENABLE, tp->mii.supports_gmii ? SPEED_1000 : SPEED_100, DUPLEX_FULL); netif_carrier_off(netdev); netif_start_queue(netdev); set_bit(WORK_ENABLE, &tp->flags); res = usb_submit_urb(tp->intr_urb, GFP_KERNEL); if (res) { if (res == -ENODEV) netif_device_detach(tp->netdev); netif_warn(tp, ifup, netdev, "intr_urb submit failed: %d\n", res); free_all_mem(tp); } else { napi_enable(&tp->napi); } mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return res; } static int rtl8152_close(struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); int res = 0; napi_disable(&tp->napi); clear_bit(WORK_ENABLE, &tp->flags); usb_kill_urb(tp->intr_urb); cancel_delayed_work_sync(&tp->schedule); netif_stop_queue(netdev); res = usb_autopm_get_interface(tp->intf); if (res < 0 || test_bit(RTL8152_UNPLUG, &tp->flags)) { rtl_drop_queued_tx(tp); rtl_stop_rx(tp); } else { mutex_lock(&tp->control); tp->rtl_ops.down(tp); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); } free_all_mem(tp); return res; } static inline void r8152_mmd_indirect(struct r8152 *tp, u16 dev, u16 reg) { ocp_reg_write(tp, OCP_EEE_AR, FUN_ADDR | dev); ocp_reg_write(tp, OCP_EEE_DATA, reg); ocp_reg_write(tp, OCP_EEE_AR, FUN_DATA | dev); } static u16 r8152_mmd_read(struct r8152 *tp, u16 dev, u16 reg) { u16 data; r8152_mmd_indirect(tp, dev, reg); data = ocp_reg_read(tp, OCP_EEE_DATA); ocp_reg_write(tp, OCP_EEE_AR, 0x0000); return data; } static void r8152_mmd_write(struct r8152 *tp, u16 dev, u16 reg, u16 data) { r8152_mmd_indirect(tp, dev, reg); ocp_reg_write(tp, OCP_EEE_DATA, data); ocp_reg_write(tp, OCP_EEE_AR, 0x0000); } static void r8152_eee_en(struct r8152 *tp, bool enable) { u16 config1, config2, config3; u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR); config1 = ocp_reg_read(tp, OCP_EEE_CONFIG1) & ~sd_rise_time_mask; config2 = ocp_reg_read(tp, OCP_EEE_CONFIG2); config3 = ocp_reg_read(tp, OCP_EEE_CONFIG3) & ~fast_snr_mask; if (enable) { ocp_data |= EEE_RX_EN | EEE_TX_EN; config1 |= EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN | RX_QUIET_EN; config1 |= sd_rise_time(1); config2 |= RG_DACQUIET_EN | RG_LDVQUIET_EN; config3 |= fast_snr(42); } else { ocp_data &= ~(EEE_RX_EN | EEE_TX_EN); config1 &= ~(EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN | RX_QUIET_EN); config1 |= sd_rise_time(7); config2 &= ~(RG_DACQUIET_EN | RG_LDVQUIET_EN); config3 |= fast_snr(511); } ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data); ocp_reg_write(tp, OCP_EEE_CONFIG1, config1); ocp_reg_write(tp, OCP_EEE_CONFIG2, config2); ocp_reg_write(tp, OCP_EEE_CONFIG3, config3); } static void r8152b_enable_eee(struct r8152 *tp) { r8152_eee_en(tp, true); r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, MDIO_EEE_100TX); } static void r8153_eee_en(struct r8152 *tp, bool enable) { u32 ocp_data; u16 config; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR); config = ocp_reg_read(tp, OCP_EEE_CFG); if (enable) { ocp_data |= EEE_RX_EN | EEE_TX_EN; config |= EEE10_EN; } else { ocp_data &= ~(EEE_RX_EN | EEE_TX_EN); config &= ~EEE10_EN; } ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data); ocp_reg_write(tp, OCP_EEE_CFG, config); } static void r8153_enable_eee(struct r8152 *tp) { r8153_eee_en(tp, true); ocp_reg_write(tp, OCP_EEE_ADV, MDIO_EEE_1000T | MDIO_EEE_100TX); } static void r8152b_enable_fc(struct r8152 *tp) { u16 anar; anar = r8152_mdio_read(tp, MII_ADVERTISE); anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; r8152_mdio_write(tp, MII_ADVERTISE, anar); } static void rtl_tally_reset(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY); ocp_data |= TALLY_RESET; ocp_write_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY, ocp_data); } static void r8152b_init(struct r8152 *tp) { u32 ocp_data; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; r8152b_disable_aldps(tp); if (tp->version == RTL_VER_01) { ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE); ocp_data &= ~LED_MODE_MASK; ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data); } r8152_power_cut_en(tp, false); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR); ocp_data |= TX_10M_IDLE_EN | PFM_PWM_SWITCH; ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL); ocp_data &= ~MCU_CLK_RATIO_MASK; ocp_data |= MCU_CLK_RATIO | D3_CLK_GATED_EN; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, ocp_data); ocp_data = GPHY_STS_MSK | SPEED_DOWN_MSK | SPDWN_RXDV_MSK | SPDWN_LINKCHG_MSK; ocp_write_word(tp, MCU_TYPE_PLA, PLA_GPHY_INTR_IMR, ocp_data); r8152b_enable_eee(tp); r8152b_enable_aldps(tp); r8152b_enable_fc(tp); rtl_tally_reset(tp); /* enable rx aggregation */ ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL); ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN); ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data); } static void r8153_init(struct r8152 *tp) { u32 ocp_data; int i; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; r8153_disable_aldps(tp); r8153_u1u2en(tp, false); for (i = 0; i < 500; i++) { if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) & AUTOLOAD_DONE) break; msleep(20); } for (i = 0; i < 500; i++) { ocp_data = ocp_reg_read(tp, OCP_PHY_STATUS) & PHY_STAT_MASK; if (ocp_data == PHY_STAT_LAN_ON || ocp_data == PHY_STAT_PWRDN) break; msleep(20); } usb_disable_lpm(tp->udev); r8153_u2p3en(tp, false); if (tp->version == RTL_VER_04) { ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2); ocp_data &= ~pwd_dn_scale_mask; ocp_data |= pwd_dn_scale(96); ocp_write_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY); ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND; ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data); } else if (tp->version == RTL_VER_05) { ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0); ocp_data &= ~ECM_ALDPS; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1); if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0) ocp_data &= ~DYNAMIC_BURST; else ocp_data |= DYNAMIC_BURST; ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data); } else if (tp->version == RTL_VER_06) { ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1); if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0) ocp_data &= ~DYNAMIC_BURST; else ocp_data |= DYNAMIC_BURST; ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data); } ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2); ocp_data |= EP4_FULL_FC; ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL); ocp_data &= ~TIMER11_EN; ocp_write_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE); ocp_data &= ~LED_MODE_MASK; ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data); ocp_data = FIFO_EMPTY_1FB | ROK_EXIT_LPM; if (tp->version == RTL_VER_04 && tp->udev->speed != USB_SPEED_SUPER) ocp_data |= LPM_TIMER_500MS; else ocp_data |= LPM_TIMER_500US; ocp_write_byte(tp, MCU_TYPE_USB, USB_LPM_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2); ocp_data &= ~SEN_VAL_MASK; ocp_data |= SEN_VAL_NORMAL | SEL_RXIDLE; ocp_write_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2, ocp_data); ocp_write_word(tp, MCU_TYPE_USB, USB_CONNECT_TIMER, 0x0001); r8153_power_cut_en(tp, false); r8153_u1u2en(tp, true); ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, ALDPS_SPDWN_RATIO); ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2, EEE_SPDWN_RATIO); ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, PKT_AVAIL_SPDWN_EN | SUSPEND_SPDWN_EN | U1U2_SPDWN_EN | L1_SPDWN_EN); ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4, PWRSAVE_SPDWN_EN | RXDV_SPDWN_EN | TX10MIDLE_EN | TP100_SPDWN_EN | TP500_SPDWN_EN | TP1000_SPDWN_EN | EEE_SPDWN_EN); r8153_enable_eee(tp); r8153_enable_aldps(tp); r8152b_enable_fc(tp); rtl_tally_reset(tp); r8153_u2p3en(tp, true); } static int rtl8152_pre_reset(struct usb_interface *intf) { struct r8152 *tp = usb_get_intfdata(intf); struct net_device *netdev; if (!tp) return 0; netdev = tp->netdev; if (!netif_running(netdev)) return 0; napi_disable(&tp->napi); clear_bit(WORK_ENABLE, &tp->flags); usb_kill_urb(tp->intr_urb); cancel_delayed_work_sync(&tp->schedule); if (netif_carrier_ok(netdev)) { netif_stop_queue(netdev); mutex_lock(&tp->control); tp->rtl_ops.disable(tp); mutex_unlock(&tp->control); } return 0; } static int rtl8152_post_reset(struct usb_interface *intf) { struct r8152 *tp = usb_get_intfdata(intf); struct net_device *netdev; if (!tp) return 0; netdev = tp->netdev; if (!netif_running(netdev)) return 0; set_bit(WORK_ENABLE, &tp->flags); if (netif_carrier_ok(netdev)) { mutex_lock(&tp->control); tp->rtl_ops.enable(tp); rtl8152_set_rx_mode(netdev); mutex_unlock(&tp->control); netif_wake_queue(netdev); } napi_enable(&tp->napi); return 0; } static bool delay_autosuspend(struct r8152 *tp) { bool sw_linking = !!netif_carrier_ok(tp->netdev); bool hw_linking = !!(rtl8152_get_speed(tp) & LINK_STATUS); /* This means a linking change occurs and the driver doesn't detect it, * yet. If the driver has disabled tx/rx and hw is linking on, the * device wouldn't wake up by receiving any packet. */ if (work_busy(&tp->schedule.work) || sw_linking != hw_linking) return true; /* If the linking down is occurred by nway, the device may miss the * linking change event. And it wouldn't wake when linking on. */ if (!sw_linking && tp->rtl_ops.in_nway(tp)) return true; else return false; } static int rtl8152_suspend(struct usb_interface *intf, pm_message_t message) { struct r8152 *tp = usb_get_intfdata(intf); struct net_device *netdev = tp->netdev; int ret = 0; mutex_lock(&tp->control); if (PMSG_IS_AUTO(message)) { if (netif_running(netdev) && delay_autosuspend(tp)) { ret = -EBUSY; goto out1; } set_bit(SELECTIVE_SUSPEND, &tp->flags); } else { netif_device_detach(netdev); } if (netif_running(netdev) && test_bit(WORK_ENABLE, &tp->flags)) { clear_bit(WORK_ENABLE, &tp->flags); usb_kill_urb(tp->intr_urb); napi_disable(&tp->napi); if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) { rtl_stop_rx(tp); rtl_runtime_suspend_enable(tp, true); } else { cancel_delayed_work_sync(&tp->schedule); tp->rtl_ops.down(tp); } napi_enable(&tp->napi); } out1: mutex_unlock(&tp->control); return ret; } static int rtl8152_resume(struct usb_interface *intf) { struct r8152 *tp = usb_get_intfdata(intf); mutex_lock(&tp->control); if (!test_bit(SELECTIVE_SUSPEND, &tp->flags)) { tp->rtl_ops.init(tp); netif_device_attach(tp->netdev); } if (netif_running(tp->netdev) && tp->netdev->flags & IFF_UP) { if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) { rtl_runtime_suspend_enable(tp, false); clear_bit(SELECTIVE_SUSPEND, &tp->flags); napi_disable(&tp->napi); set_bit(WORK_ENABLE, &tp->flags); if (netif_carrier_ok(tp->netdev)) rtl_start_rx(tp); napi_enable(&tp->napi); } else { tp->rtl_ops.up(tp); rtl8152_set_speed(tp, AUTONEG_ENABLE, tp->mii.supports_gmii ? SPEED_1000 : SPEED_100, DUPLEX_FULL); netif_carrier_off(tp->netdev); set_bit(WORK_ENABLE, &tp->flags); } usb_submit_urb(tp->intr_urb, GFP_KERNEL); } else if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) { if (tp->netdev->flags & IFF_UP) rtl_runtime_suspend_enable(tp, false); clear_bit(SELECTIVE_SUSPEND, &tp->flags); } mutex_unlock(&tp->control); return 0; } static int rtl8152_reset_resume(struct usb_interface *intf) { struct r8152 *tp = usb_get_intfdata(intf); clear_bit(SELECTIVE_SUSPEND, &tp->flags); return rtl8152_resume(intf); } static void rtl8152_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct r8152 *tp = netdev_priv(dev); if (usb_autopm_get_interface(tp->intf) < 0) return; if (!rtl_can_wakeup(tp)) { wol->supported = 0; wol->wolopts = 0; } else { mutex_lock(&tp->control); wol->supported = WAKE_ANY; wol->wolopts = __rtl_get_wol(tp); mutex_unlock(&tp->control); } usb_autopm_put_interface(tp->intf); } static int rtl8152_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct r8152 *tp = netdev_priv(dev); int ret; if (!rtl_can_wakeup(tp)) return -EOPNOTSUPP; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out_set_wol; mutex_lock(&tp->control); __rtl_set_wol(tp, wol->wolopts); tp->saved_wolopts = wol->wolopts & WAKE_ANY; mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out_set_wol: return ret; } static u32 rtl8152_get_msglevel(struct net_device *dev) { struct r8152 *tp = netdev_priv(dev); return tp->msg_enable; } static void rtl8152_set_msglevel(struct net_device *dev, u32 value) { struct r8152 *tp = netdev_priv(dev); tp->msg_enable = value; } static void rtl8152_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info) { struct r8152 *tp = netdev_priv(netdev); strlcpy(info->driver, MODULENAME, sizeof(info->driver)); strlcpy(info->version, DRIVER_VERSION, sizeof(info->version)); usb_make_path(tp->udev, info->bus_info, sizeof(info->bus_info)); } static int rtl8152_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) { struct r8152 *tp = netdev_priv(netdev); int ret; if (!tp->mii.mdio_read) return -EOPNOTSUPP; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); ret = mii_ethtool_gset(&tp->mii, cmd); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } static int rtl8152_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct r8152 *tp = netdev_priv(dev); int ret; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); ret = rtl8152_set_speed(tp, cmd->autoneg, cmd->speed, cmd->duplex); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } static const char rtl8152_gstrings[][ETH_GSTRING_LEN] = { "tx_packets", "rx_packets", "tx_errors", "rx_errors", "rx_missed", "align_errors", "tx_single_collisions", "tx_multi_collisions", "rx_unicast", "rx_broadcast", "rx_multicast", "tx_aborted", "tx_underrun", }; static int rtl8152_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(rtl8152_gstrings); default: return -EOPNOTSUPP; } } static void rtl8152_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct r8152 *tp = netdev_priv(dev); struct tally_counter tally; if (usb_autopm_get_interface(tp->intf) < 0) return; generic_ocp_read(tp, PLA_TALLYCNT, sizeof(tally), &tally, MCU_TYPE_PLA); usb_autopm_put_interface(tp->intf); data[0] = le64_to_cpu(tally.tx_packets); data[1] = le64_to_cpu(tally.rx_packets); data[2] = le64_to_cpu(tally.tx_errors); data[3] = le32_to_cpu(tally.rx_errors); data[4] = le16_to_cpu(tally.rx_missed); data[5] = le16_to_cpu(tally.align_errors); data[6] = le32_to_cpu(tally.tx_one_collision); data[7] = le32_to_cpu(tally.tx_multi_collision); data[8] = le64_to_cpu(tally.rx_unicast); data[9] = le64_to_cpu(tally.rx_broadcast); data[10] = le32_to_cpu(tally.rx_multicast); data[11] = le16_to_cpu(tally.tx_aborted); data[12] = le16_to_cpu(tally.tx_underrun); } static void rtl8152_get_strings(struct net_device *dev, u32 stringset, u8 *data) { switch (stringset) { case ETH_SS_STATS: memcpy(data, *rtl8152_gstrings, sizeof(rtl8152_gstrings)); break; } } static int r8152_get_eee(struct r8152 *tp, struct ethtool_eee *eee) { u32 ocp_data, lp, adv, supported = 0; u16 val; val = r8152_mmd_read(tp, MDIO_MMD_PCS, MDIO_PCS_EEE_ABLE); supported = mmd_eee_cap_to_ethtool_sup_t(val); val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV); adv = mmd_eee_adv_to_ethtool_adv_t(val); val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_LPABLE); lp = mmd_eee_adv_to_ethtool_adv_t(val); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR); ocp_data &= EEE_RX_EN | EEE_TX_EN; eee->eee_enabled = !!ocp_data; eee->eee_active = !!(supported & adv & lp); eee->supported = supported; eee->advertised = adv; eee->lp_advertised = lp; return 0; } static int r8152_set_eee(struct r8152 *tp, struct ethtool_eee *eee) { u16 val = ethtool_adv_to_mmd_eee_adv_t(eee->advertised); r8152_eee_en(tp, eee->eee_enabled); if (!eee->eee_enabled) val = 0; r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, val); return 0; } static int r8153_get_eee(struct r8152 *tp, struct ethtool_eee *eee) { u32 ocp_data, lp, adv, supported = 0; u16 val; val = ocp_reg_read(tp, OCP_EEE_ABLE); supported = mmd_eee_cap_to_ethtool_sup_t(val); val = ocp_reg_read(tp, OCP_EEE_ADV); adv = mmd_eee_adv_to_ethtool_adv_t(val); val = ocp_reg_read(tp, OCP_EEE_LPABLE); lp = mmd_eee_adv_to_ethtool_adv_t(val); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR); ocp_data &= EEE_RX_EN | EEE_TX_EN; eee->eee_enabled = !!ocp_data; eee->eee_active = !!(supported & adv & lp); eee->supported = supported; eee->advertised = adv; eee->lp_advertised = lp; return 0; } static int r8153_set_eee(struct r8152 *tp, struct ethtool_eee *eee) { u16 val = ethtool_adv_to_mmd_eee_adv_t(eee->advertised); r8153_eee_en(tp, eee->eee_enabled); if (!eee->eee_enabled) val = 0; ocp_reg_write(tp, OCP_EEE_ADV, val); return 0; } static int rtl_ethtool_get_eee(struct net_device *net, struct ethtool_eee *edata) { struct r8152 *tp = netdev_priv(net); int ret; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); ret = tp->rtl_ops.eee_get(tp, edata); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } static int rtl_ethtool_set_eee(struct net_device *net, struct ethtool_eee *edata) { struct r8152 *tp = netdev_priv(net); int ret; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); ret = tp->rtl_ops.eee_set(tp, edata); if (!ret) ret = mii_nway_restart(&tp->mii); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } static int rtl8152_nway_reset(struct net_device *dev) { struct r8152 *tp = netdev_priv(dev); int ret; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); ret = mii_nway_restart(&tp->mii); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } static int rtl8152_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *coalesce) { struct r8152 *tp = netdev_priv(netdev); switch (tp->version) { case RTL_VER_01: case RTL_VER_02: return -EOPNOTSUPP; default: break; } coalesce->rx_coalesce_usecs = tp->coalesce; return 0; } static int rtl8152_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *coalesce) { struct r8152 *tp = netdev_priv(netdev); int ret; switch (tp->version) { case RTL_VER_01: case RTL_VER_02: return -EOPNOTSUPP; default: break; } if (coalesce->rx_coalesce_usecs > COALESCE_SLOW) return -EINVAL; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) return ret; mutex_lock(&tp->control); if (tp->coalesce != coalesce->rx_coalesce_usecs) { tp->coalesce = coalesce->rx_coalesce_usecs; if (netif_running(tp->netdev) && netif_carrier_ok(netdev)) r8153_set_rx_early_timeout(tp); } mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); return ret; } static struct ethtool_ops ops = { .get_drvinfo = rtl8152_get_drvinfo, .get_settings = rtl8152_get_settings, .set_settings = rtl8152_set_settings, .get_link = ethtool_op_get_link, .nway_reset = rtl8152_nway_reset, .get_msglevel = rtl8152_get_msglevel, .set_msglevel = rtl8152_set_msglevel, .get_wol = rtl8152_get_wol, .set_wol = rtl8152_set_wol, .get_strings = rtl8152_get_strings, .get_sset_count = rtl8152_get_sset_count, .get_ethtool_stats = rtl8152_get_ethtool_stats, .get_coalesce = rtl8152_get_coalesce, .set_coalesce = rtl8152_set_coalesce, .get_eee = rtl_ethtool_get_eee, .set_eee = rtl_ethtool_set_eee, }; static int rtl8152_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd) { struct r8152 *tp = netdev_priv(netdev); struct mii_ioctl_data *data = if_mii(rq); int res; if (test_bit(RTL8152_UNPLUG, &tp->flags)) return -ENODEV; res = usb_autopm_get_interface(tp->intf); if (res < 0) goto out; switch (cmd) { case SIOCGMIIPHY: data->phy_id = R8152_PHY_ID; /* Internal PHY */ break; case SIOCGMIIREG: mutex_lock(&tp->control); data->val_out = r8152_mdio_read(tp, data->reg_num); mutex_unlock(&tp->control); break; case SIOCSMIIREG: if (!capable(CAP_NET_ADMIN)) { res = -EPERM; break; } mutex_lock(&tp->control); r8152_mdio_write(tp, data->reg_num, data->val_in); mutex_unlock(&tp->control); break; default: res = -EOPNOTSUPP; } usb_autopm_put_interface(tp->intf); out: return res; } static int rtl8152_change_mtu(struct net_device *dev, int new_mtu) { struct r8152 *tp = netdev_priv(dev); int ret; switch (tp->version) { case RTL_VER_01: case RTL_VER_02: return eth_change_mtu(dev, new_mtu); default: break; } if (new_mtu < 68 || new_mtu > RTL8153_MAX_MTU) return -EINVAL; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) return ret; mutex_lock(&tp->control); dev->mtu = new_mtu; if (netif_running(dev) && netif_carrier_ok(dev)) r8153_set_rx_early_size(tp); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); return ret; } static const struct net_device_ops rtl8152_netdev_ops = { .ndo_open = rtl8152_open, .ndo_stop = rtl8152_close, .ndo_do_ioctl = rtl8152_ioctl, .ndo_start_xmit = rtl8152_start_xmit, .ndo_tx_timeout = rtl8152_tx_timeout, .ndo_set_features = rtl8152_set_features, .ndo_set_rx_mode = rtl8152_set_rx_mode, .ndo_set_mac_address = rtl8152_set_mac_address, .ndo_change_mtu = rtl8152_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_features_check = rtl8152_features_check, }; static void r8152b_get_version(struct r8152 *tp) { u32 ocp_data; u16 version; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR1); version = (u16)(ocp_data & VERSION_MASK); switch (version) { case 0x4c00: tp->version = RTL_VER_01; break; case 0x4c10: tp->version = RTL_VER_02; break; case 0x5c00: tp->version = RTL_VER_03; tp->mii.supports_gmii = 1; break; case 0x5c10: tp->version = RTL_VER_04; tp->mii.supports_gmii = 1; break; case 0x5c20: tp->version = RTL_VER_05; tp->mii.supports_gmii = 1; break; case 0x5c30: tp->version = RTL_VER_06; tp->mii.supports_gmii = 1; break; default: netif_info(tp, probe, tp->netdev, "Unknown version 0x%04x\n", version); break; } } static void rtl8152_unload(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; if (tp->version != RTL_VER_01) r8152_power_cut_en(tp, true); } static void rtl8153_unload(struct r8152 *tp) { if (test_bit(RTL8152_UNPLUG, &tp->flags)) return; r8153_power_cut_en(tp, false); } static int rtl_ops_init(struct r8152 *tp) { struct rtl_ops *ops = &tp->rtl_ops; int ret = 0; switch (tp->version) { case RTL_VER_01: case RTL_VER_02: ops->init = r8152b_init; ops->enable = rtl8152_enable; ops->disable = rtl8152_disable; ops->up = rtl8152_up; ops->down = rtl8152_down; ops->unload = rtl8152_unload; ops->eee_get = r8152_get_eee; ops->eee_set = r8152_set_eee; ops->in_nway = rtl8152_in_nway; break; case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: ops->init = r8153_init; ops->enable = rtl8153_enable; ops->disable = rtl8153_disable; ops->up = rtl8153_up; ops->down = rtl8153_down; ops->unload = rtl8153_unload; ops->eee_get = r8153_get_eee; ops->eee_set = r8153_set_eee; ops->in_nway = rtl8153_in_nway; break; default: ret = -ENODEV; netif_err(tp, probe, tp->netdev, "Unknown Device\n"); break; } return ret; } static int rtl8152_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct r8152 *tp; struct net_device *netdev; int ret; if (udev->actconfig->desc.bConfigurationValue != 1) { usb_driver_set_configuration(udev, 1); return -ENODEV; } usb_reset_device(udev); netdev = alloc_etherdev(sizeof(struct r8152)); if (!netdev) { dev_err(&intf->dev, "Out of memory\n"); return -ENOMEM; } SET_NETDEV_DEV(netdev, &intf->dev); tp = netdev_priv(netdev); tp->msg_enable = 0x7FFF; tp->udev = udev; tp->netdev = netdev; tp->intf = intf; r8152b_get_version(tp); ret = rtl_ops_init(tp); if (ret) goto out; mutex_init(&tp->control); INIT_DELAYED_WORK(&tp->schedule, rtl_work_func_t); netdev->netdev_ops = &rtl8152_netdev_ops; netdev->watchdog_timeo = RTL8152_TX_TIMEOUT; netdev->features |= NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_FRAGLIST | NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_FRAGLIST | NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | NETIF_F_IPV6_CSUM | NETIF_F_TSO6; netdev->ethtool_ops = &ops; netif_set_gso_max_size(netdev, RTL_LIMITED_TSO_SIZE); tp->mii.dev = netdev; tp->mii.mdio_read = read_mii_word; tp->mii.mdio_write = write_mii_word; tp->mii.phy_id_mask = 0x3f; tp->mii.reg_num_mask = 0x1f; tp->mii.phy_id = R8152_PHY_ID; switch (udev->speed) { case USB_SPEED_SUPER: tp->coalesce = COALESCE_SUPER; break; case USB_SPEED_HIGH: tp->coalesce = COALESCE_HIGH; break; default: tp->coalesce = COALESCE_SLOW; break; } intf->needs_remote_wakeup = 1; tp->rtl_ops.init(tp); set_ethernet_addr(tp); usb_set_intfdata(intf, tp); netif_napi_add(netdev, &tp->napi, r8152_poll, RTL8152_NAPI_WEIGHT); ret = register_netdev(netdev); if (ret != 0) { netif_err(tp, probe, netdev, "couldn't register the device\n"); goto out1; } if (!rtl_can_wakeup(tp)) __rtl_set_wol(tp, 0); tp->saved_wolopts = __rtl_get_wol(tp); if (tp->saved_wolopts) device_set_wakeup_enable(&udev->dev, true); else device_set_wakeup_enable(&udev->dev, false); netif_info(tp, probe, netdev, "%s\n", DRIVER_VERSION); return 0; out1: netif_napi_del(&tp->napi); usb_set_intfdata(intf, NULL); out: free_netdev(netdev); return ret; } static void rtl8152_disconnect(struct usb_interface *intf) { struct r8152 *tp = usb_get_intfdata(intf); usb_set_intfdata(intf, NULL); if (tp) { struct usb_device *udev = tp->udev; if (udev->state == USB_STATE_NOTATTACHED) set_bit(RTL8152_UNPLUG, &tp->flags); netif_napi_del(&tp->napi); unregister_netdev(tp->netdev); tp->rtl_ops.unload(tp); free_netdev(tp->netdev); } } #define REALTEK_USB_DEVICE(vend, prod) \ .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ USB_DEVICE_ID_MATCH_INT_CLASS, \ .idVendor = (vend), \ .idProduct = (prod), \ .bInterfaceClass = USB_CLASS_VENDOR_SPEC \ }, \ { \ .match_flags = USB_DEVICE_ID_MATCH_INT_INFO | \ USB_DEVICE_ID_MATCH_DEVICE, \ .idVendor = (vend), \ .idProduct = (prod), \ .bInterfaceClass = USB_CLASS_COMM, \ .bInterfaceSubClass = USB_CDC_SUBCLASS_ETHERNET, \ .bInterfaceProtocol = USB_CDC_PROTO_NONE /* table of devices that work with this driver */ static struct usb_device_id rtl8152_table[] = { {REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8152)}, {REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8153)}, {REALTEK_USB_DEVICE(VENDOR_ID_SAMSUNG, 0xa101)}, {REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x7205)}, {REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x304f)}, {REALTEK_USB_DEVICE(VENDOR_ID_NVIDIA, 0x09ff)}, {} }; MODULE_DEVICE_TABLE(usb, rtl8152_table); static struct usb_driver rtl8152_driver = { .name = MODULENAME, .id_table = rtl8152_table, .probe = rtl8152_probe, .disconnect = rtl8152_disconnect, .suspend = rtl8152_suspend, .resume = rtl8152_resume, .reset_resume = rtl8152_reset_resume, .pre_reset = rtl8152_pre_reset, .post_reset = rtl8152_post_reset, .supports_autosuspend = 1, .disable_hub_initiated_lpm = 1, }; module_usb_driver(rtl8152_driver); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");