Load the attached. The title gibbers, adding "inininin" to the end of it
!

john

-- 
"Yeah, I woke up in the day accidentally once, the moon was on fire for some
 reason and I couldn't see very well and all the bandwidth disappeared, it was
 very scary :("
        - Orion
#This file was created by <dlj0> Thu Nov 20 17:46:00 1997
#LyX 0.11 (C) 1995-1997 Matthias Ettrich and the LyX Team
\lyxformat 2.15
\textclass article
\begin_preamble
\oddsidemargin -10 pt 
\evensidemargin 10 pt 
\marginparwidth 1 in 
\oddsidemargin 0 in 
\evensidemargin 0 in 
\marginparwidth 0.75 in 
\textwidth 6.375 true in 
\topmargin -0.25 in 
\textheight 8.5 true in 
\usepackage{amsmath,amsthm}
\usepackage{amsfonts}
\usepackage{multicol}
\end_preamble
\language default
\inputencoding default
\fontscheme default
\graphics dvips
\paperfontsize 11
\spacing single 
\papersize letterpaper
\paperpackage a4
\use_geometry 1
\use_amsmath 0
\paperorientation portrait
\leftmargin 1 in
\topmargin 1.5 in
\rightmargin 1 in
\bottommargin 1 in
\secnumdepth 3
\tocdepth 3
\paragraph_separation skip
\defskip medskip
\quotes_language english
\quotes_times 2
\papercolumns 1
\papersides 1
\paperpagestyle plain

\layout Title

Math 23, Fall 1997, Exam # 2 Solutions
\layout Date

November 11, 1997
\layout Enumerate

Find the directional derivative of 
\begin_inset Formula \( f(x,y)=x^{2}y+2y^{2} \)
\end_inset 

 at the point 
\begin_inset Formula \( (1,3) \)
\end_inset 

 in the direction 
\begin_inset Formula \( \mathbf{u}=\frac{1}{2}\mathbf{i}-\frac{\sqrt{3}}{2}\mathbf{j} 
\)
\end_inset 

.
\emph on 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
(9 points)
\begin_deeper 
\layout Description

Solution: 
\begin_inset Formula \( \frac{\partial f}{\partial x}=2xy \)
\end_inset 

, 
\begin_inset Formula \( \frac{\partial f}{\partial y}=x^{2}+4y \)
\end_inset 

, so 
\begin_inset Formula \( \left. \nabla f\right| _{(1,3)}=6\mathbf{i}+13\mathbf{j} \)
\end_inset 

.
 Then, 
\begin_inset Formula \( \left. D_{\mathbf{u}}f\right| _{(1,3)}=\left( 
6\mathbf{i}+13\mathbf{j}\right) \cdot \left( 
\frac{1}{2}\mathbf{i}-\frac{\sqrt{3}}{2}\mathbf{j}\right) =3-\frac{13\sqrt{3}}{2}. \)
\end_inset 


\end_deeper 
\layout Enumerate

Find the gradient of the function 
\begin_inset Formula \( f(x,y)=x^{2}+3xy+e^{(x+y)} \)
\end_inset 

 at the point 
\begin_inset Formula \( (2,1) \)
\end_inset 

.
\emph on 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
(9 points)
\begin_deeper 
\layout Description

Solution: 
\begin_inset Formula \( \frac{\partial f}{\partial x}=2x+3y+e^{(x+y)} \)
\end_inset 

, 
\begin_inset Formula \( \frac{\partial f}{\partial y}=3x+e^{(x+y)} \)
\end_inset 

, so 
\begin_inset Formula \( \left. \nabla f\right| 
_{(2,1)}=(7+e^{3})\mathbf{i}+(6+e^{3})\mathbf{j} \)
\end_inset 

.
\end_deeper 
\layout Enumerate

Find the tangent plane to the graph of 
\begin_inset Formula \( f(x,y)=3x^{2}+y^{2} \)
\end_inset 

 at the point 
\begin_inset Formula \( (1,2,7) \)
\end_inset 

.
 
\emph on 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
(9 points)
\begin_deeper 
\layout Description

Solution: The easiest way to find this is to remember that the tangent plane
 satisfies the equation 
\begin_inset Formula \( z=f(x_{0},y_{0})+\left. \frac{\partial f}{\partial x}\right| 
_{(x_{0},y_{0})}(x-x_{0})+\left. \frac{\partial f}{\partial y}\right| 
_{(x_{0},y_{0})}(y-y_{0}) \)
\end_inset 

 (p.
 767).
 Then, in this case 
\begin_inset Formula \( z=7+6(x-1)+4(y-2) \)
\end_inset 

 is the equation of the tangent plane.
\end_deeper 
\layout Enumerate

Egbert left for work in the morning and left his electric blanket on.
 It produces a temperature distribution on the bed given by 
\begin_inset Formula \( T(x,y)=60+6\sin (\pi x)+3y \)
\end_inset 

, in degrees Fahrenheit, where 
\begin_inset Formula \( x \)
\end_inset 

 is the distance in feet from the corner of the bed marked as 
\begin_inset Formula \( (0,0) \)
\end_inset 

, towards the foot of the bed, and 
\begin_inset Formula \( y \)
\end_inset 

 is the distance towards the other side, 
\begin_inset Formula \( 0\leq x\leq 6 \)
\end_inset 

 and 
\begin_inset Formula \( 0\leq y\leq 3 \)
\end_inset 

.
 His cat is sitting at the point 
\begin_inset Formula \( (2,1) \)
\end_inset 

.
 Cats always move towards warmth.
 (warmth-seeking cat...) Which direction should he (the cat) head from that
 point, in order to feel the greatest increase in warmth?
\emph on 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
(9 points)
\begin_deeper 
\layout Standard
\added_space_top 0.3cm \added_space_bottom 0.3cm \align center 

\begin_inset Figure size 223 144
file bed.eps
width 2 3.1
height 2 2
flags 9

\end_inset 


\layout Description

Solution: Since the gradient points in the direction of the maximum increase
 of temperature, all we need find is 
\begin_inset Formula \( \left. \nabla T\right| _{(2,1)} \)
\end_inset 

.
 But, 
\begin_inset Formula \( \frac{\partial T}{\partial x}=6\pi \cos (\pi x) \)
\end_inset 

, and 
\begin_inset Formula \( \frac{\partial T}{\partial y}=3 \)
\end_inset 

, so 
\begin_inset Formula \( \left. \nabla T\right| _{(2,1)}=6\pi \mathbf{i}+3\mathbf{j} \)
\end_inset 

, which points in the direction the cat should head.
\end_deeper 
\layout Enumerate

Find the absolute maximum and absolute minimum of the function 
\begin_inset Formula \( f(x,y)=2x^{2}+4x+3y^{2} \)
\end_inset 

 on the region 
\begin_inset Formula \( R \)
\end_inset 

 described by 
\begin_inset Formula \( x^{2}+y^{2}\leq 4 \)
\end_inset 

.
\emph on 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
(9 points)
\begin_deeper 
\layout Description

Solution: First, look for critical points in the interior.
 
\begin_inset Formula \( \nabla f=(4x+4)\mathbf{i}+6y\mathbf{j} \)
\end_inset 

, so 
\begin_inset Formula \( \partial f/\partial x=\partial f/\partial y=0 \)
\end_inset 

 only when 
\begin_inset Formula \( x=-1 \)
\end_inset 

 and 
\begin_inset Formula \( y=0 \)
\end_inset 

.
 
\begin_inset Formula \( f(-1,0)=-2 \)
\end_inset 

.
 Now, you could try to decide whether that point is a local maximum or local
 minimum, but it isn't necessary, 
\newline 
The next thing to do would be to find the critical points of the function
 restricted to the boundary circle: 
\begin_inset Formula \( x^{2}+y^{2}=4 \)
\end_inset 

, which can be parameterized by 
\begin_inset Formula \( x=2\cos (t) \)
\end_inset 

, 
\begin_inset Formula \( y=2\sin (t) \)
\end_inset 

, 
\begin_inset Formula \( t\in [0,2\pi ] \)
\end_inset 

.
 
\begin_inset Formula 
\[
f(2\cos (t),2\sin (t))=8\cos ^{2}(t)+8\cos (t)+12\sin ^{2}(t)=8+8\cos (t)+4\sin 
^{2}(t).\]

\end_inset 

Setting 
\begin_inset Formula \( \frac{d}{dt}(f(2\cos (t),2\sin (t)))=0 \)
\end_inset 

 results in 
\begin_inset Formula 
\[
0=-8\sin (t)+8\cos (t)\sin (t)=8\sin (t)\left( -1+\cos (t)\right) ,\]

\end_inset 

so 
\begin_inset Formula \( \sin (t)=0 \)
\end_inset 

 or 
\begin_inset Formula \( \cos (t)=1 \)
\end_inset 

.
 
\begin_inset Formula \( \sin (t)=0 \)
\end_inset 

 implies that 
\begin_inset Formula \( t=0 \)
\end_inset 

 or 
\begin_inset Formula \( t=\pi  \)
\end_inset 

, which means 
\begin_inset Formula \( (x,y)=(2,0),\, \textrm{or}\, (-2,0) \)
\end_inset 

.
 
\begin_inset Formula \( \cos (t)=1 \)
\end_inset 

 implies 
\begin_inset Formula \( t=0 \)
\end_inset 

 only, so 
\begin_inset Formula \( (x,y)=(2,0) \)
\end_inset 

.
\newline 
Now, just compare the values of 
\begin_inset Formula \( f \)
\end_inset 

 on these points: 
\begin_inset Formula \( f(-1,0)=-2 \)
\end_inset 

, 
\begin_inset Formula \( f(2,0)=16 \)
\end_inset 

, and 
\begin_inset Formula \( f(-2,0)=0 \)
\end_inset 

, so the absolute maximum is 
\begin_inset Formula \( 16 \)
\end_inset 

 at 
\begin_inset Formula \( (2,0) \)
\end_inset 

 and the absolute minimum is 
\begin_inset Formula \( -2 \)
\end_inset 

 at 
\begin_inset Formula \( (-1,0) \)
\end_inset 

.
\end_deeper 
\layout Enumerate

Find the maximum value of the of the function 
\begin_inset Formula \( f(x,y,z)=x+2y-3z \)
\end_inset 

 subject to the constraint 
\begin_inset Formula \( x^{2}+2y^{2}+3z^{2}=6 \)
\end_inset 

.
\emph on 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
(9 points)
\begin_deeper 
\layout Description

Solution: This is a Lagrange multipliers problem.
 The condition 
\begin_inset Formula \( \nabla f=\lambda \nabla g \)
\end_inset 

 becomes 
\begin_inset Formula \( \mathbf{i}+2\mathbf{j}-3\mathbf{k}=\lambda \left( 
2x\mathbf{i}+4y\mathbf{j}+6z\mathbf{k}\right)  \)
\end_inset 

, which can be solved by 
\begin_inset Formula \( 1=2x\lambda  \)
\end_inset 

, 
\begin_inset Formula \( 2=4y\lambda  \)
\end_inset 

, 
\begin_inset Formula \( -3=6z\lambda  \)
\end_inset 

, so that 
\begin_inset Formula \( x=\frac{1}{2\lambda } \)
\end_inset 

, 
\begin_inset Formula \( y=\frac{1}{2\lambda } \)
\end_inset 

, and 
\begin_inset Formula \( z=\frac{-1}{2\lambda } \)
\end_inset 

,The other equation, that 
\begin_inset Formula \( (x,y,z) \)
\end_inset 

 satisfy the constraint 
\begin_inset Formula \( x^{2}+2y^{2}+3z^{2}=6 \)
\end_inset 

, implies that 
\begin_inset Formula 
\[
\left( \frac{1}{2\lambda }\right) ^{2}+2\left( \frac{1}{2\lambda }\right) ^{2}+3\left( 
\frac{-1}{2\lambda }\right) ^{2}=6,\]

\end_inset 

or 
\begin_inset Formula \( \frac{6}{4\lambda ^{2}}=6 \)
\end_inset 

, which implies 
\begin_inset Formula \( \lambda =\pm \frac{1}{2} \)
\end_inset 

.
 This then implies that 
\begin_inset Formula \( (x,y,z)=(1,1,-1) \)
\end_inset 

 or 
\begin_inset Formula \( (x,y,z)=(-1,-1,1) \)
\end_inset 

.
 Since 
\begin_inset Formula \( f(1,1,-1)=6 \)
\end_inset 

 while 
\begin_inset Formula \( f(-1,-1,1)=-6 \)
\end_inset 

, the maximum value must be 
\begin_inset Formula \( 6 \)
\end_inset 

.
\end_deeper 
\layout Enumerate

Evaluate 
\begin_inset Formula \( \displaystyle \int _{0}^{1}\int _{x}^{1}e^{y^{2}}dy\, dx \)
\end_inset 

.
 
\emph on 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
(9 points)
\begin_deeper 
\layout Description

Solution: You have to switch the order of integration on this one.
 The region is bounded by the lines 
\begin_inset Formula \( y=x \)
\end_inset 

, 
\begin_inset Formula \( y=1 \)
\end_inset 

, and 
\begin_inset Formula \( x=0 \)
\end_inset 

.
 The only place 
\begin_inset Formula \( x=1 \)
\end_inset 

 occurs is at the vertex of the triangle, which is the intersection of 
\begin_inset Formula \( y=x \)
\end_inset 

 and 
\begin_inset Formula \( y=1 \)
\end_inset 

.
 So, written the other way around, 
\begin_inset Formula 
\begin{eqnarray*}
\int _{0}^{1}\int _{x}^{1}e^{y^{2}}dy\, dx & = & \int _{0}^{1}\int 
_{0}^{y}e^{y^{2}}dx\, dy\\
 & = & \int _{0}^{1}\left( \left. x\, e^{y^{2}}\right| _{x=0}^{x=y}\right) dy\\
 & = & \int _{0}^{1}y\, e^{y^{2}}dy\\
 & = & \left. \frac{1}{2}e^{y^{2}}\right| _{0}^{1}\\
 & = & \frac{1}{2}\left( e-1\right) .
\end{eqnarray*}

\end_inset 


\end_deeper 
\layout Enumerate

Find the mass of the interior of the cardioid 
\begin_inset Formula \( r=1+\cos \theta  \)
\end_inset 

, if the density 
\begin_inset Formula \( \rho =r \)
\end_inset 

.
\emph on 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
(9 points)
\begin_deeper 
\layout Description

Solution: Since the mass is the integral of the density over the region,
 
\begin_inset Formula 
\begin{eqnarray*}
Mass & = & \int _{0}^{2\pi }\int _{0}^{1+\cos \theta }r\, rdrd\theta \\
 & = & \int _{0}^{2\pi }\left( \left. \frac{1}{3}r^{3}\right| _{0}^{1+\cos \theta 
}\right) d\theta \\
 & = & \int _{0}^{2\pi }\frac{1}{3}\left( 1+\cos \theta \right) ^{3}d\theta \\
 & = & \int _{0}^{2\pi }\left( \frac{1}{3}+\cos \theta +\cos ^{2}\theta 
+\frac{1}{3}\cos ^{3}\theta \right) d\theta \\
 & = & \frac{2\pi }{3}+0+\pi +0.
\end{eqnarray*}

\end_inset 

The last integrals might be a little tricky, but certainly 
\begin_inset Formula \( \int _{0}^{2\pi }\cos \theta d\theta =0 \)
\end_inset 

 and 
\begin_inset Formula \( \int _{0}^{2\pi }\cos ^{2}\theta d\theta =\pi  \)
\end_inset 

.
 The last one, 
\begin_inset Formula \( \int _{0}^{2\pi }\cos ^{3}\theta d\theta =0 \)
\end_inset 

, can be solved by substituting 
\begin_inset Formula \( \cos ^{2}\theta =(1-\sin ^{2}\theta ) \)
\end_inset 

 and substituting 
\begin_inset Formula \( u=\sin \theta  \)
\end_inset 

.
\end_deeper 
\layout Enumerate

Set up, but 
\series bold 
do not attempt to evaluate
\series default 
, the double integrals needed to find the 
\begin_inset Formula \( x \)
\end_inset 

-coordinate 
\begin_inset Formula \( \overline{x} \)
\end_inset 

 of the center of mass of the of the region bounded above by the parabola
 
\begin_inset Formula \( y=4-x^{2} \)
\end_inset 

 and bounded below by the line 
\begin_inset Formula \( y=-x \)
\end_inset 

, if the density 
\begin_inset Formula \( \rho  \)
\end_inset 

 is given by 
\begin_inset Formula \( \rho =x^{2}+3y^{2} \)
\end_inset 

.
\emph on 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
(9 points)
\begin_deeper 
\layout Description

Solution: 
\begin_inset Formula 
\[
\overline{x}=\frac{\int 
^{\frac{1}{2}+\frac{\sqrt{17}}{2}}_{\frac{1}{2}-\frac{\sqrt{17}}{2}}\int 
_{-x}^{4-x^{2}}x(x^{2}+3y^{2})dydx}{\int 
^{\frac{1}{2}+\frac{\sqrt{17}}{2}}_{\frac{1}{2}-\frac{\sqrt{17}}{2}}\int 
_{-x}^{4-x^{2}}(x^{2}+3y^{2})dydx}.\]

\end_inset 


\end_deeper 
\layout Enumerate

Set up, but 
\series bold 
do not attempt to evaluate
\series default 
, the triple integral to find the integral of the function 
\begin_inset Formula \( f(x,y,z)=e^{x}\cos (y+z) \)
\end_inset 

 over the region 
\begin_inset Formula \( R \)
\end_inset 

 in space bounded by: 
\begin_inset Formula \( z=0 \)
\end_inset 

, 
\begin_inset Formula \( y=1 \)
\end_inset 

, 
\begin_inset Formula \( x^{2}=y \)
\end_inset 

 and 
\begin_inset Formula \( z=x^{2}+y^{2} \)
\end_inset 

.
\emph on 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
(9 points)
\begin_deeper 
\layout Description

Solution: 
\begin_inset Formula 
\[
\int \int \int _{R}f(x,y,z)dV=\int _{-1}^{1}\int _{x^{2}}^{1}\int 
_{0}^{x^{2}+y^{2}}e^{x}\cos (y+z)dzdydx.\]

\end_inset 


\end_deeper 
\layout Enumerate

How much water will a conical cup with depth 6 inches and top-radius 2 inches
 hold, if it is filled up to the brim? Find the volume 
\emph on 
using a triple integral
\emph default 
, 
\series bold 
\emph on 
not
\series default 
\emph default 
 some formula you may remember.
\emph on 

\protected_separator 

\protected_separator 

\protected_separator 

\protected_separator 
(9 points)
\begin_deeper 
\layout Standard
\added_space_top 0.3cm \added_space_bottom 0.3cm \align center 

\begin_inset Figure size 144 144
file cup.eps
width 2 2
height 2 2
flags 9

\end_inset 


\layout Description

Solution: It's best to use cylindrical coordinates.
 The region is then defined as that region between 
\begin_inset Formula \( z=6 \)
\end_inset 

 and 
\begin_inset Formula \( z=3r \)
\end_inset 

, 
\begin_inset Formula 
\begin{eqnarray*}
Volume & = & \int _{0}^{2\pi }\int _{0}^{2}\int _{3r}^{6}rdzdrd\theta \\
 & = & \int _{0}^{2\pi }\int _{0}^{2}\left. rz\right| _{z=3r}^{z=6}drd\theta \\
 & = & \int _{0}^{2\pi }\int _{0}^{2}\left( 6r-3r^{2}\right) drd\theta \\
 & = & \int _{0}^{2\pi }\left. \left( 3r^{2}-r^{3}\right) \right| _{0}^{2}d\theta \\
 & = & \int _{0}^{2\pi }4d\theta \\
 & = & 8\pi .
\end{eqnarray*}

\end_inset 


\the_end

Reply via email to