{quote} k = 1 Otherwise as in the Pegasos article. No parallelism. {quote}
I confused. As the consequence, what is the motivation behind integrating the Pegasos into Mahout. Can you estimate that in which situation, this implementation can outperform the original Pegasos? Large-scale data set or any other concern? With this implementation, how can we take advantage of Map-reduce framework? On Tue, Dec 22, 2009 at 12:44 PM, Ted Dunning (JIRA) <j...@apache.org>wrote: > > [ > https://issues.apache.org/jira/browse/MAHOUT-227?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=12793497#action_12793497] > > Ted Dunning commented on MAHOUT-227: > ------------------------------------ > > {quote} > Can you specify this sequential implementation? > {quote} > > k = 1 > > Otherwise as in the Pegasos article. > > > > Parallel SVM > > ------------ > > > > Key: MAHOUT-227 > > URL: https://issues.apache.org/jira/browse/MAHOUT-227 > > Project: Mahout > > Issue Type: Task > > Components: Classification > > Reporter: zhao zhendong > > Attachments: ParallelPegasos.doc, ParallelPegasos.pdf > > > > > > I wrote a proposal of parallel algorithm for SVM training. Any comment is > welcome. > > -- > This message is automatically generated by JIRA. > - > You can reply to this email to add a comment to the issue online. > > -- ------------------------------------------------------------- Zhen-Dong Zhao (Maxim) <><<><><><><><><><>><><><><><>>>>>> Department of Computer Science School of Computing National University of Singapore ><><><><><><><><><><><><><><><><<<< Homepage:http://zhaozhendong.googlepages.com Mail: zhaozhend...@gmail.com >>>>>>><><><><><><><><<><>><><<<<<<