[ 
https://issues.apache.org/jira/browse/MAHOUT-180?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=12834925#action_12834925
 ] 

Jake Mannix commented on MAHOUT-180:
------------------------------------

I need to regenerate the patch.  It currently works, but it's got some 
"ugliness" in the code I'm trying to clean up  (some semi-hardcoded things, a 
kludgey api for eigenvectors, inconsistent method names).  I'll do some more 
tests (slightly bigger doc set) tonight and if it's still doing well and 
passing tests we can try to get it in there.  We can iterate on refactoring 
later.

> port Hadoop-ified Lanczos SVD implementation from decomposer
> ------------------------------------------------------------
>
>                 Key: MAHOUT-180
>                 URL: https://issues.apache.org/jira/browse/MAHOUT-180
>             Project: Mahout
>          Issue Type: New Feature
>          Components: Math
>    Affects Versions: 0.2
>            Reporter: Jake Mannix
>            Assignee: Jake Mannix
>            Priority: Minor
>             Fix For: 0.3
>
>         Attachments: MAHOUT-180.patch, MAHOUT-180.patch, MAHOUT-180.patch, 
> MAHOUT-180.patch
>
>
> I wrote up a hadoop version of the Lanczos algorithm for performing SVD on 
> sparse matrices available at http://decomposer.googlecode.com/, which is 
> Apache-licensed, and I'm willing to donate it.  I'll have to port over the 
> implementation to use Mahout vectors, or else add in these vectors as well.
> Current issues with the decomposer implementation include: if your matrix is 
> really big, you need to re-normalize before decomposition: find the largest 
> eigenvalue first, and divide all your rows by that value, then decompose, or 
> else you'll blow over Double.MAX_VALUE once you've run too many iterations 
> (the L^2 norm of intermediate vectors grows roughly as 
> (largest-eigenvalue)^(num-eigenvalues-found-so-far), so losing precision on 
> the lower end is better than blowing over MAX_VALUE).  When this is ported to 
> Mahout, we should add in the capability to do this automatically (run a 
> couple iterations to find the largest eigenvalue, save that, then iterate 
> while scaling vectors by 1/max_eigenvalue).

-- 
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.

Reply via email to