Umm, I actually depend pretty heavily on the logging in the SVD solvers.
 They are very long-running processes, and give off a ton of useful
information about what the heck is going on.

Reducing dependencies is great, but logging?  I think the math stuff could
really use logging.  I haven't been able to follow all the JIRA tickets
lately, things have been crazy, sorry.

  -jake

On Sun, Apr 4, 2010 at 10:21 PM, <sro...@apache.org> wrote:

> Author: srowen
> Date: Mon Apr  5 05:21:27 2010
> New Revision: 930796
>
> URL: http://svn.apache.org/viewvc?rev=930796&view=rev
> Log:
> MAHOUT-361 Hearing no objection and believing Math shouldn't have log
> statements and seeing that they're not really used much, I commit
>
> Modified:
>    lucene/mahout/trunk/math/pom.xml
>
>  
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/JsonMatrixAdapter.java
>
>  
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/JsonVectorAdapter.java
>    lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/Timer.java
>
>  
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/decomposer/hebbian/HebbianSolver.java
>
>  
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/decomposer/lanczos/LanczosSolver.java
>
>  
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/jet/random/sampling/RandomSampler.java
>
>  
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/jet/stat/quantile/QuantileCalc.java
>
>  
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/jet/stat/quantile/QuantileFinderFactory.java
>
>  
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/matrix/DoubleFactory2D.java
>
>  
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/matrix/doublealgo/Formatter.java
>
>  
> lucene/mahout/trunk/math/src/test/java/org/apache/mahout/math/decomposer/SolverTest.java
>
> Modified: lucene/mahout/trunk/math/pom.xml
> URL:
> http://svn.apache.org/viewvc/lucene/mahout/trunk/math/pom.xml?rev=930796&r1=930795&r2=930796&view=diff
>
> ==============================================================================
> --- lucene/mahout/trunk/math/pom.xml (original)
> +++ lucene/mahout/trunk/math/pom.xml Mon Apr  5 05:21:27 2010
> @@ -100,19 +100,6 @@
>     </dependency>
>
>     <dependency>
> -      <groupId>org.slf4j</groupId>
> -      <artifactId>slf4j-api</artifactId>
> -      <version>1.5.8</version>
> -    </dependency>
> -
> -    <dependency>
> -      <groupId>org.slf4j</groupId>
> -      <artifactId>slf4j-jcl</artifactId>
> -      <version>1.5.8</version>
> -      <scope>test</scope>
> -    </dependency>
> -
> -    <dependency>
>       <groupId>junit</groupId>
>       <artifactId>junit</artifactId>
>       <scope>test</scope>
>
> Modified:
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/JsonMatrixAdapter.java
> URL:
> http://svn.apache.org/viewvc/lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/JsonMatrixAdapter.java?rev=930796&r1=930795&r2=930796&view=diff
>
> ==============================================================================
> ---
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/JsonMatrixAdapter.java
> (original)
> +++
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/JsonMatrixAdapter.java
> Mon Apr  5 05:21:27 2010
> @@ -27,15 +27,12 @@ import com.google.gson.JsonPrimitive;
>  import com.google.gson.JsonSerializationContext;
>  import com.google.gson.JsonSerializer;
>  import com.google.gson.reflect.TypeToken;
> -import org.slf4j.Logger;
> -import org.slf4j.LoggerFactory;
>
>  import java.lang.reflect.Type;
>
>  public class JsonMatrixAdapter implements JsonSerializer<Matrix>,
>     JsonDeserializer<Matrix> {
>
> -  private static final Logger log =
> LoggerFactory.getLogger(JsonMatrixAdapter.class);
>   public static final String CLASS = "class";
>   public static final String MATRIX = "matrix";
>
> @@ -73,7 +70,7 @@ public class JsonMatrixAdapter implement
>     try {
>       cl = ccl.loadClass(klass);
>     } catch (ClassNotFoundException e) {
> -      log.warn("Error while loading class", e);
> +      throw new JsonParseException(e);
>     }
>     return (Matrix) gson.fromJson(matrix, cl);
>   }
>
> Modified:
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/JsonVectorAdapter.java
> URL:
> http://svn.apache.org/viewvc/lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/JsonVectorAdapter.java?rev=930796&r1=930795&r2=930796&view=diff
>
> ==============================================================================
> ---
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/JsonVectorAdapter.java
> (original)
> +++
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/JsonVectorAdapter.java
> Mon Apr  5 05:21:27 2010
> @@ -26,15 +26,12 @@ import com.google.gson.JsonParseExceptio
>  import com.google.gson.JsonPrimitive;
>  import com.google.gson.JsonSerializationContext;
>  import com.google.gson.JsonSerializer;
> -import org.slf4j.Logger;
> -import org.slf4j.LoggerFactory;
>
>  import java.lang.reflect.Type;
>
>  public class JsonVectorAdapter implements JsonSerializer<Vector>,
>     JsonDeserializer<Vector> {
>
> -  private static final Logger log =
> LoggerFactory.getLogger(JsonVectorAdapter.class);
>   public static final String VECTOR = "vector";
>
>   public JsonElement serialize(Vector src, Type typeOfSrc,
> @@ -61,7 +58,7 @@ public class JsonVectorAdapter implement
>     try {
>       cl = ccl.loadClass(klass);
>     } catch (ClassNotFoundException e) {
> -      log.warn("Error while loading class", e);
> +      throw new JsonParseException(e);
>     }
>     return (Vector) gson.fromJson(vector, cl);
>   }
>
> Modified:
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/Timer.java
> URL:
> http://svn.apache.org/viewvc/lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/Timer.java?rev=930796&r1=930795&r2=930796&view=diff
>
> ==============================================================================
> ---
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/Timer.java
> (original)
> +++
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/Timer.java Mon
> Apr  5 05:21:27 2010
> @@ -8,9 +8,6 @@ It is provided "as is" without expressed
>  */
>  package org.apache.mahout.math;
>
> -import org.slf4j.Logger;
> -import org.slf4j.LoggerFactory;
> -
>  /**
>  * A handy stopwatch for benchmarking.
>  * Like a real stop watch used on ancient running tracks you can start the
> watch, stop it,
> @@ -21,8 +18,6 @@ import org.slf4j.LoggerFactory;
>  @Deprecated
>  public class Timer extends PersistentObject {
>
> -  private static final Logger log = LoggerFactory.getLogger(Timer.class);
> -
>   private long baseTime;
>   private long elapsedTime;
>
> @@ -33,16 +28,6 @@ public class Timer extends PersistentObj
>     this.reset();
>   }
>
> -  /**
> -   * Prints the elapsed time on System.out
> -   *
> -   * @return <tt>this</tt> (for convenience only).
> -   */
> -  public Timer display() {
> -    log.info(this.toString());
> -    return this;
> -  }
> -
>   /** Same as <tt>seconds()</tt>. */
>   public float elapsedTime() {
>     return seconds();
> @@ -127,44 +112,6 @@ public class Timer extends PersistentObj
>     return this;
>   }
>
> -  /** Shows how to use a timer in convenient ways. */
> -  public static void test(int size) {
> -    //benchmark this piece
> -    Timer t = new Timer().start();
> -    int j = 0;
> -    for (int i = 0; i < size; i++) {
> -      j++;
> -    }
> -    t.stop();
> -    t.display();
> -
> -
> -    //do something we do not want to benchmark
> -    j = 0;
> -    for (int i = 0; i < size; i++) {
> -      j++;
> -    }
> -
> -
> -    //benchmark another piece and add to last benchmark
> -    t.start();
> -    j = 0;
> -    for (int i = 0; i < size; i++) {
> -      j++;
> -    }
> -    t.stop().display();
> -
> -
> -    //benchmark yet another piece independently
> -    t.reset(); //set timer to zero
> -    t.start();
> -    j = 0;
> -    for (int i = 0; i < size; i++) {
> -      j++;
> -    }
> -    t.stop().display();
> -  }
> -
>   /** Returns a String representation of the receiver. */
>   public String toString() {
>     return "Time=" + Float.toString(this.elapsedTime()) + " secs";
>
> Modified:
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/decomposer/hebbian/HebbianSolver.java
> URL:
> http://svn.apache.org/viewvc/lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/decomposer/hebbian/HebbianSolver.java?rev=930796&r1=930795&r2=930796&view=diff
>
> ==============================================================================
> ---
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/decomposer/hebbian/HebbianSolver.java
> (original)
> +++
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/decomposer/hebbian/HebbianSolver.java
> Mon Apr  5 05:21:27 2010
> @@ -23,7 +23,6 @@ import java.util.Random;
>
>  import java.util.ArrayList;
>
> -import org.apache.mahout.math.AbstractMatrix;
>  import org.apache.mahout.math.DenseMatrix;
>  import org.apache.mahout.math.DenseVector;
>  import org.apache.mahout.math.Matrix;
> @@ -33,8 +32,6 @@ import org.apache.mahout.math.decomposer
>  import org.apache.mahout.math.function.TimesFunction;
>  import org.apache.mahout.math.Vector;
>  import org.apache.mahout.math.function.PlusMult;
> -import org.slf4j.Logger;
> -import org.slf4j.LoggerFactory;
>
>  /**
>  * The Hebbian solver is an iterative, sparse, singular value decomposition
> solver, based on the paper
> @@ -44,16 +41,13 @@ import org.slf4j.LoggerFactory;
>  */
>  public class HebbianSolver {
>
> -  private static final Logger log =
> LoggerFactory.getLogger(HebbianSolver.class);
> -
>   private final EigenUpdater updater;
>   private final SingularVectorVerifier verifier;
>   private final double convergenceTarget;
>   private final int maxPassesPerEigen;
>   private final Random rng = new Random();
>
> -  private int numPasses = 0;
> -  private static final boolean debug = false;
> +  //private int numPasses = 0;
>
>   /**
>    * Creates a new HebbianSolver
> @@ -163,7 +157,6 @@ public class HebbianSolver {
>     int cols = corpus.numCols();
>     Matrix eigens = new DenseMatrix(desiredRank, cols);
>     List<Double> eigenValues = new ArrayList<Double>();
> -    log.info("Finding " + desiredRank + " singular vectors of matrix with
> " + corpus.numRows() + " rows, via Hebbian");
>     /**
>      * The corpusProjections matrix is a running cache of the residual
> projection of each corpus vector against all
>      * of the previously found singular vectors.  Without this, if multiple
> passes over the data is made (per
> @@ -186,17 +179,6 @@ public class HebbianSolver {
>             updater.update(currentEigen, corpus.getRow(corpusRow), state);
>         }
>         state.setFirstPass(false);
> -        if (debug) {
> -          if (previousEigen == null) {
> -            previousEigen = currentEigen.clone();
> -          } else {
> -            double dot = currentEigen.dot(previousEigen);
> -            if (dot > 0) {
> -              dot /= (currentEigen.norm(2) * previousEigen.norm(2));
> -            }
> -           // log.info("Current pass * previous pass = {}", dot);
> -          }
> -        }
>       }
>       // converged!
>       double eigenValue =
> state.getStatusProgress().get(state.getStatusProgress().size() -
> 1).getEigenValue();
> @@ -206,7 +188,6 @@ public class HebbianSolver {
>       eigens.assignRow(i, currentEigen);
>       eigenValues.add(eigenValue);
>       state.setCurrentEigenValues(eigenValues);
> -      log.info("Found eigenvector {}, eigenvalue: {}", i, eigenValue);
>
>       /**
>        *  TODO: Persist intermediate output!
> @@ -216,7 +197,7 @@ public class HebbianSolver {
>       state.setActivationDenominatorSquared(0);
>       state.setActivationNumerator(0);
>       state.getStatusProgress().clear();
> -      numPasses = 0;
> +      //numPasses = 0;
>     }
>     return state;
>   }
> @@ -253,13 +234,11 @@ public class HebbianSolver {
>   protected boolean hasNotConverged(Vector currentPseudoEigen,
>                                     Matrix corpus,
>                                     TrainingState state) {
> -    numPasses++;
> +    //numPasses++;
>     if (state.isFirstPass()) {
> -      log.info("First pass through the corpus, no need to check
> convergence...");
>       return true;
>     }
>     Matrix previousEigens = state.getCurrentEigens();
> -    log.info("Have made {} passes through the corpus, checking
> convergence...", numPasses);
>     /*
>      * Step 1: orthogonalize currentPseudoEigen by subtracting off eigen(i)
> * helper.get(i)
>      * Step 2: zero-out the helper vector because it has already helped.
> @@ -269,20 +248,11 @@ public class HebbianSolver {
>       currentPseudoEigen.assign(previousEigen, new
> PlusMult(-state.getHelperVector().get(i)));
>       state.getHelperVector().set(i, 0);
>     }
> -    if (debug && currentPseudoEigen.norm(2) > 0) {
> -      for (int i = 0; i < state.getNumEigensProcessed(); i++) {
> -        Vector previousEigen = previousEigens.getRow(i);
> -        log.info("dot with previous: {}",
> (previousEigen.dot(currentPseudoEigen)) / currentPseudoEigen.norm(2));
> -      }
> -    }
>     /*
>      * Step 3: verify how eigen-like the prospective eigen is.  This is
> potentially asynchronous.
>      */
>     EigenStatus status = verify(corpus, currentPseudoEigen);
> -    if (status.inProgress()) {
> -      log.info("Verifier not finished, making another pass...");
> -    } else {
> -      log.info("Has 1 - cosAngle: {}, convergence target is: {}", (1 -
> status.getCosAngle()), convergenceTarget);
> +    if (!status.inProgress()) {
>       state.getStatusProgress().add(status);
>     }
>     return (state.getStatusProgress().size() <= maxPassesPerEigen && 1 -
> status.getCosAngle() > convergenceTarget);
> @@ -300,7 +270,6 @@ public class HebbianSolver {
>     String corpusDir = props.getProperty("solver.input.dir");
>     String outputDir = props.getProperty("solver.output.dir");
>     if (corpusDir == null || corpusDir.length() == 0 || outputDir == null
> || outputDir.length() == 0) {
> -      log.error("{} must contain values for solver.input.dir and
> solver.output.dir", propertiesFile);
>       return;
>     }
>     int inBufferSize =
> Integer.parseInt(props.getProperty("solver.input.bufferSize"));
> @@ -321,11 +290,7 @@ public class HebbianSolver {
>     } else {
>       //  corpus = new ParallelMultiplyingDiskBufferedDoubleMatrix(new
> File(corpusDir), inBufferSize, numThreads);
>     }
> -    long now = System.currentTimeMillis();
>     TrainingState finalState = solver.solve(corpus, rank);
> -    long time = (System.currentTimeMillis() - now) / 1000;
> -    log.info("Solved {} eigenVectors in {} seconds.  Persisted to {}",
> -             new Object[]
> {finalState.getCurrentEigens().size()[AbstractMatrix.ROW], time,
> outputDir});
>   }
>
>  }
>
> Modified:
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/decomposer/lanczos/LanczosSolver.java
> URL:
> http://svn.apache.org/viewvc/lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/decomposer/lanczos/LanczosSolver.java?rev=930796&r1=930795&r2=930796&view=diff
>
> ==============================================================================
> ---
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/decomposer/lanczos/LanczosSolver.java
> (original)
> +++
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/decomposer/lanczos/LanczosSolver.java
> Mon Apr  5 05:21:27 2010
> @@ -35,8 +35,6 @@ import org.apache.mahout.math.matrix.Dou
>  import org.apache.mahout.math.matrix.DoubleMatrix2D;
>  import org.apache.mahout.math.matrix.impl.DenseDoubleMatrix2D;
>  import org.apache.mahout.math.matrix.linalg.EigenvalueDecomposition;
> -import org.slf4j.Logger;
> -import org.slf4j.LoggerFactory;
>
>  /**
>  * <p>Simple implementation of the <a href="
> http://en.wikipedia.org/wiki/Lanczos_algorithm";>Lanczos algorithm</a> for
> @@ -65,8 +63,6 @@ import org.slf4j.LoggerFactory;
>  */
>  public class LanczosSolver {
>
> -  private static final Logger log =
> LoggerFactory.getLogger(LanczosSolver.class);
> -
>   public static final double SAFE_MAX = 1.0e150;
>
>   private static final double NANOS_IN_MILLI = 1.0e6;
> @@ -77,7 +73,7 @@ public class LanczosSolver {
>
>   private final Map<TimingSection, Long> startTimes = new
> EnumMap<TimingSection, Long>(TimingSection.class);
>   private final Map<TimingSection, Long> times = new EnumMap<TimingSection,
> Long>(TimingSection.class);
> -  protected double scaleFactor = 0;
> +  protected double scaleFactor = 0.0;
>
>   private static final class Scale implements UnaryFunction {
>     private final double d;
> @@ -103,7 +99,6 @@ public class LanczosSolver {
>                     Matrix eigenVectors,
>                     List<Double> eigenValues,
>                     boolean isSymmetric) {
> -    log.info("Finding {} singular vectors of matrix with {} rows, via
> Lanczos", desiredRank, corpus.numRows());
>     Vector currentVector = getInitialVector(corpus);
>     Vector previousVector = new DenseVector(currentVector.size());
>     Matrix basis = new SparseRowMatrix(new int[]{desiredRank,
> corpus.numCols()});
> @@ -114,7 +109,6 @@ public class LanczosSolver {
>     for (int i = 1; i < desiredRank; i++) {
>       startTime(TimingSection.ITERATE);
>       Vector nextVector = isSymmetric ? corpus.times(currentVector) :
> corpus.timesSquared(currentVector);
> -      log.info("{} passes through the corpus so far...", i);
>       calculateScaleFactor(nextVector);
>       nextVector.assign(new Scale(1 / scaleFactor));
>       nextVector.assign(previousVector, new PlusMult(-beta));
> @@ -128,7 +122,6 @@ public class LanczosSolver {
>       // and normalize
>       beta = nextVector.norm(2);
>       if (outOfRange(beta) || outOfRange(alpha)) {
> -        log.warn("Lanczos parameters out of range: alpha = {}, beta = {}.
>  Bailing out early!", alpha, beta);
>         break;
>       }
>       final double b = beta;
> @@ -145,7 +138,6 @@ public class LanczosSolver {
>     }
>     startTime(TimingSection.TRIDIAG_DECOMP);
>
> -    log.info("Lanczos iteration complete - now to diagonalize the
> tri-diagonal auxiliary matrix.");
>     // at this point, have tridiag all filled out, and basis is all filled
> out, and orthonormalized
>     EigenvalueDecomposition decomp = new EigenvalueDecomposition(triDiag);
>
> @@ -164,10 +156,8 @@ public class LanczosSolver {
>       }
>       realEigen = realEigen.normalize();
>       eigenVectors.assignRow(i, realEigen);
> -      log.info("Eigenvector {} found with eigenvalue {}", i,
> eigenVals.get(i));
>       eigenValues.add(eigenVals.get(i));
>     }
> -    log.info("LanczosSolver finished.");
>     endTime(TimingSection.FINAL_EIGEN_CREATE);
>   }
>
>
> Modified:
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/jet/random/sampling/RandomSampler.java
> URL:
> http://svn.apache.org/viewvc/lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/jet/random/sampling/RandomSampler.java?rev=930796&r1=930795&r2=930796&view=diff
>
> ==============================================================================
> ---
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/jet/random/sampling/RandomSampler.java
> (original)
> +++
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/jet/random/sampling/RandomSampler.java
> Mon Apr  5 05:21:27 2010
> @@ -10,8 +10,7 @@ package org.apache.mahout.math.jet.rando
>
>  import org.apache.mahout.math.PersistentObject;
>  import org.apache.mahout.math.jet.random.engine.RandomEngine;
> -import org.slf4j.Logger;
> -import org.slf4j.LoggerFactory;
> +
>  /**
>  * Space and time efficiently computes a sorted <i>Simple Random Sample
> Without Replacement (SRSWOR)</i>, that is, a sorted set of <tt>n</tt> random
> numbers from an interval of <tt>N</tt> numbers;
>  * Example: Computing <tt>n=3</tt> random numbers from the interval
> <tt>[1,50]</tt> may yield the sorted random set <tt>(7,13,47)</tt>.
> @@ -112,8 +111,6 @@ import org.slf4j.LoggerFactory;
>  @Deprecated
>  public class RandomSampler extends PersistentObject {
>
> -  private static final Logger log =
> LoggerFactory.getLogger(RandomSampler.class);
> -
>   //public class RandomSampler extends Object implements
> java.io.Serializable {
>   private long n;
>   private long N;
>
> Modified:
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/jet/stat/quantile/QuantileCalc.java
> URL:
> http://svn.apache.org/viewvc/lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/jet/stat/quantile/QuantileCalc.java?rev=930796&r1=930795&r2=930796&view=diff
>
> ==============================================================================
> ---
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/jet/stat/quantile/QuantileCalc.java
> (original)
> +++
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/jet/stat/quantile/QuantileCalc.java
> Mon Apr  5 05:21:27 2010
> @@ -8,14 +8,9 @@ It is provided "as is" without expressed
>  */
>  package org.apache.mahout.math.jet.stat.quantile;
>
> -import org.slf4j.Logger;
> -import org.slf4j.LoggerFactory;
> -
>  /** Computes b and k vor various parameters. */
>  class QuantileCalc {
>
> -  private static final Logger log =
> LoggerFactory.getLogger(QuantileCalc.class);
> -
>   private QuantileCalc() {
>   }
>
> @@ -289,77 +284,6 @@ class QuantileCalc {
>     return result;
>   }
>
> -  public static void main(String[] args) {
> -    test_B_and_K_Calculation(args);
> -  }
> -
> -  /** Computes b and k for different parameters. */
> -  public static void test_B_and_K_Calculation(String[] args) {
> -    boolean known_N;
> -    if (args == null) {
> -      known_N = false;
> -    } else {
> -      known_N = Boolean.valueOf(args[0]);
> -    }
> -
> -    int[] quantiles = {1, 1000};
> -
> -    long[] sizes = {100000, 1000000, 10000000, 1000000000};
> -
> -    double[] deltas = {0.0, 0.001, 0.0001, 0.00001};
> -
> -    double[] epsilons = {0.0, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0000001};
> -
> -
> -    if (!known_N) {
> -      sizes = new long[]{0};
> -    }
> -    log.info("\n\n");
> -    if (known_N) {
> -      log.info("Computing b's and k's for KNOWN N");
> -    } else {
> -      log.info("Computing b's and k's for UNKNOWN N");
> -    }
> -    log.info("mem [elements/1024]");
> -    log.info("***********************************");
> -
> -    for (int p : quantiles) {
> -      log.info("------------------------------");
> -      log.info("computing for p = {}", p);
> -      for (long N : sizes) {
> -        log.info("   ------------------------------");
> -        log.info("   computing for N = {}", N);
> -        for (double delta : deltas) {
> -          log.info("      ------------------------------");
> -          log.info("      computing for delta = {}", delta);
> -          for (double epsilon : epsilons) {
> -            double[] returnSamplingRate = new double[1];
> -            long[] result;
> -            if (known_N) {
> -              result = known_N_compute_B_and_K(N, epsilon, delta, p,
> returnSamplingRate);
> -            } else {
> -              result = unknown_N_compute_B_and_K(epsilon, delta, p);
> -            }
> -
> -            long b = result[0];
> -            long k = result[1];
> -            log.info("         (e,d,N,p)=({},{},{},{}) --> ", new
> Object[] {epsilon, delta, N, p});
> -            log.info("(b,k,mem");
> -            if (known_N) {
> -              log.info(",sampling");
> -            }
> -            log.info(")=({},{},{}", new Object[] {b, k, (b * k / 1024)});
> -            if (known_N) {
> -              log.info(",{}", returnSamplingRate[0]);
> -            }
> -            log.info(")");
> -          }
> -        }
> -      }
> -    }
> -
> -  }
> -
>   /**
>    * Computes the number of buffers and number of values per buffer such
> that quantiles can be determined with an
>    * approximation error no more than epsilon with a certain probability.
> @@ -468,7 +392,6 @@ class QuantileCalc {
>       } //end for b
>
>       if (best_b == Long.MAX_VALUE) {
> -        log.info("Warning: Computing b and k looks like a lot of work!");
>         // no solution found so far. very unlikely. Anyway, try again.
>         max_b *= 2;
>         max_h *= 2;
>
> Modified:
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/jet/stat/quantile/QuantileFinderFactory.java
> URL:
> http://svn.apache.org/viewvc/lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/jet/stat/quantile/QuantileFinderFactory.java?rev=930796&r1=930795&r2=930796&view=diff
>
> ==============================================================================
> ---
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/jet/stat/quantile/QuantileFinderFactory.java
> (original)
> +++
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/jet/stat/quantile/QuantileFinderFactory.java
> Mon Apr  5 05:21:27 2010
> @@ -13,8 +13,7 @@ package org.apache.mahout.math.jet.stat.
>  import org.apache.mahout.math.jet.math.Arithmetic;
>  import org.apache.mahout.math.jet.random.engine.RandomEngine;
>  import org.apache.mahout.math.list.DoubleArrayList;
> -import org.slf4j.Logger;
> -import org.slf4j.LoggerFactory;
> +
>  /**
>  * Factory constructing exact and approximate quantile finders for both
> known and unknown <tt>N</tt>.
>  * Also see {...@link hep.aida.bin.QuantileBin1D}, demonstrating how this
> package can be used.
> @@ -95,8 +94,6 @@ import org.slf4j.LoggerFactory;
>  @Deprecated
>  public class QuantileFinderFactory {
>
> -  private static final Logger log =
> LoggerFactory.getLogger(QuantileFinderFactory.class);
> -
>   /** Make this class non instantiable. Let still allow others to inherit.
> */
>   private QuantileFinderFactory() {
>   }
> @@ -587,23 +584,20 @@ public class QuantileFinderFactory {
>           double alpha_two = (c + 2.0 * d - root) / (2.0 * d);
>
>           // any alpha must satisfy 0<alpha<1 to yield valid solutions
> -          boolean alpha_one_OK = false;
> -          if (0.0 < alpha_one && alpha_one < 1.0) {
> -            alpha_one_OK = true;
> -          }
> -          boolean alpha_two_OK = false;
> -          if (0.0 < alpha_two && alpha_two < 1.0) {
> -            alpha_two_OK = true;
> -          }
> +          boolean alpha_one_OK = 0.0 < alpha_one && alpha_one < 1.0;
> +          boolean alpha_two_OK = 0.0 < alpha_two && alpha_two < 1.0;
>           if (alpha_one_OK || alpha_two_OK) {
> -            double alpha = alpha_one;
> -            if (alpha_one_OK && alpha_two_OK) {
> -              // take the alpha that minimizes d/alpha
> -              alpha = Math.max(alpha_one, alpha_two);
> -            } else if (alpha_two_OK) {
> +            double alpha;
> +            if (alpha_one_OK) {
> +              if (alpha_two_OK) {
> +                // take the alpha that minimizes d/alpha
> +                alpha = Math.max(alpha_one, alpha_two);
> +              } else {
> +                alpha = alpha_one;
> +              }
> +            } else {
>               alpha = alpha_two;
>             }
> -
>             // now we have k=Ceiling(Max(d/alpha, (h+1)/(2*epsilon)))
>             long k = (long) Math.ceil(Math.max(d / alpha, (h + 1) / (2.0 *
> epsilon)));
>             if (k > 0) { // valid solution?
> @@ -621,7 +615,6 @@ public class QuantileFinderFactory {
>       } //end for b
>
>       if (best_b == Long.MAX_VALUE) {
> -        log.warn("Computing b and k looks like a lot of work!");
>         // no solution found so far. very unlikely. Anyway, try again.
>         max_b *= 2;
>         max_h *= 2;
>
> Modified:
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/matrix/DoubleFactory2D.java
> URL:
> http://svn.apache.org/viewvc/lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/matrix/DoubleFactory2D.java?rev=930796&r1=930795&r2=930796&view=diff
>
> ==============================================================================
> ---
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/matrix/DoubleFactory2D.java
> (original)
> +++
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/matrix/DoubleFactory2D.java
> Mon Apr  5 05:21:27 2010
> @@ -15,8 +15,7 @@ import org.apache.mahout.math.jet.random
>  import org.apache.mahout.math.matrix.impl.DenseDoubleMatrix2D;
>  import org.apache.mahout.math.matrix.impl.RCDoubleMatrix2D;
>  import org.apache.mahout.math.matrix.impl.SparseDoubleMatrix2D;
> -import org.slf4j.Logger;
> -import org.slf4j.LoggerFactory;
> +
>  /**
>  Factory for convenient construction of 2-d matrices holding
> <tt>double</tt>
>  cells. Also provides convenient methods to compose (concatenate) and
> decompose
> @@ -85,8 +84,6 @@ sample} to construct random matrices. </
>  @Deprecated
>  public class DoubleFactory2D extends PersistentObject {
>
> -  private static final Logger log =
> LoggerFactory.getLogger(DoubleFactory2D.class);
> -
>   /** A factory producing dense matrices. */
>   public static final DoubleFactory2D dense = new DoubleFactory2D();
>
>
> Modified:
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/matrix/doublealgo/Formatter.java
> URL:
> http://svn.apache.org/viewvc/lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/matrix/doublealgo/Formatter.java?rev=930796&r1=930795&r2=930796&view=diff
>
> ==============================================================================
> ---
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/matrix/doublealgo/Formatter.java
> (original)
> +++
> lucene/mahout/trunk/math/src/main/java/org/apache/mahout/math/matrix/doublealgo/Formatter.java
> Mon Apr  5 05:21:27 2010
> @@ -15,8 +15,7 @@ import org.apache.mahout.math.matrix.imp
>  import org.apache.mahout.math.matrix.impl.AbstractMatrix1D;
>  import org.apache.mahout.math.matrix.impl.AbstractMatrix2D;
>  import org.apache.mahout.math.matrix.impl.Former;
> -import org.slf4j.Logger;
> -import org.slf4j.LoggerFactory;
> +
>  /**
>  Flexible, well human readable matrix print formatting; By default decimal
> point aligned. Build on top of the C-like <i>sprintf</i> functionality
>  provided by the Format class written by Cay Horstmann.
> @@ -272,8 +271,6 @@ import org.slf4j.LoggerFactory;
>  @Deprecated
>  public class Formatter extends AbstractFormatter {
>
> -  private static final Logger log =
> LoggerFactory.getLogger(Formatter.class);
> -
>   /** Constructs and returns a matrix formatter with format <tt>"%G"</tt>.
> */
>   public Formatter() {
>     this("%G");
>
> Modified:
> lucene/mahout/trunk/math/src/test/java/org/apache/mahout/math/decomposer/SolverTest.java
> URL:
> http://svn.apache.org/viewvc/lucene/mahout/trunk/math/src/test/java/org/apache/mahout/math/decomposer/SolverTest.java?rev=930796&r1=930795&r2=930796&view=diff
>
> ==============================================================================
> ---
> lucene/mahout/trunk/math/src/test/java/org/apache/mahout/math/decomposer/SolverTest.java
> (original)
> +++
> lucene/mahout/trunk/math/src/test/java/org/apache/mahout/math/decomposer/SolverTest.java
> Mon Apr  5 05:21:27 2010
> @@ -23,16 +23,12 @@ import org.apache.mahout.math.Sequential
>  import org.apache.mahout.math.SparseRowMatrix;
>  import org.apache.mahout.math.Vector;
>  import org.apache.mahout.math.VectorIterable;
> -import org.slf4j.Logger;
> -import org.slf4j.LoggerFactory;
>
>  import java.util.Random;
>
>
>  public abstract class SolverTest extends TestCase {
>
> -  private static final Logger log =
> LoggerFactory.getLogger(SolverTest.class);
> -
>   protected SolverTest(String name) {
>     super(name);
>   }
> @@ -75,7 +71,6 @@ public abstract class SolverTest extends
>       double dot = afterMultiply.dot(e);
>       double afterNorm = afterMultiply.getLengthSquared();
>       double error = 1 - dot / Math.sqrt(afterNorm * e.getLengthSquared());
> -      log.info("Eigenvalue({}) = {}", i,
> Math.sqrt(afterNorm/e.getLengthSquared()));
>       assertTrue("Error margin: {" + error + " too high! (for eigen " + i +
> ')', Math.abs(error) < errorMargin);
>     }
>   }
>
>
>

Reply via email to