Hi all,
I would like to evaluate the IR statistics of my item based recommender with 
the GenericRecommenderIRStatsEvaluator. However, precision and recall are 0.0 
for each user, as I can see from my logs. 

Possible, that my data are too sparse?

Regards,
Mirko

My data:

936080 preferences
162291 users
109661 items

How I call the evaluator:

IRStatistics irStats = new 
GenericRecommenderIRStatsEvaluator().evaluate(recBuilder, null, dm, null, 10, 
Double.NaN, 0.1);
log.debug("Precision: "+irStats.getPrecision());
log.debug("Recall: "+irStats.getRecall());


My RecommenderBuilder implementation:

public class SimpleRecommenderBuilder implements RecommenderBuilder{

@Override
        public Recommender buildRecommender(DataModel dm) throws TasteException 
{
                        CachingItemSimilarity itemSim = new 
CachingItemSimilarity(new LogLikelihoodSimilarity(dm), dm);
                        ItemBasedRecommender itemRecommender = new 
GenericItemBasedRecommender(dm, itemSim);
                        return itemRecommender;         
        }
}

My logs:

[...]
 2010-02-24 19:50:30,517  Processed 160000 users 2010-02-24 19:50:30,521  
Processed 162291 users 2010-02-24 19:50:35,473  Retrieving new recommendations 
for user ID '-85512851039269613' 2010-02-24 19:50:35,473  Recommending items 
for user ID '-85512851039269613' 2010-02-24 19:50:59,995  Recommendations are: 
[RecommendedItem[item:454067076717825534, value:0.005567929], 
RecommendedItem[item:-2322998021761419502, value:0.005567929], 
RecommendedItem[item:612773236668408
7105, value:0.005567929], RecommendedItem[item:-3981461966915310408, 
value:0.005567929], RecommendedItem
[item:-5313445508550677921, value:0.005567929], 
RecommendedItem[item:-1832988160817640861, value:0.00556
7929], RecommendedItem[item:2911886255972263265, value:0.005567929], 
RecommendedItem[item:26217060620275
57406, value:0.005567929], RecommendedItem[item:-3536836517010980436, 
value:0.005567929], RecommendedIte
m[item:-6721918598917466000, value:0.005567929]]
 2010-02-24 19:50:59,995  Evaluated with user -85512851039269613 in 29782ms
 2010-02-24 19:50:59,995  Precision/recall/fall-out: 0.0 / 0.0 / 
9.119405351853041E-5
 2010-02-24 19:51:00,061  Processed 10000 users
 2010-02-24 19:51:00,074  Processed 20000 users
 2010-02-24 19:51:00,088  Processed 30000 users
 2010-02-24 19:51:00,101  Processed 40000 users
 2010-02-24 19:51:00,118  Processed 50000 users
 2010-02-24 19:51:00,131  Processed 60000 users
 2010-02-24 19:51:00,145  Processed 70000 users
 2010-02-24 19:51:00,159  Processed 80000 users
 2010-02-24 19:51:00,180  Processed 90000 users
 2010-02-24 19:51:00,195  Processed 100000 users
 2010-02-24 19:51:00,209  Processed 110000 users
 2010-02-24 19:51:00,224  Processed 120000 users
 2010-02-24 19:51:00,239  Processed 130000 users
 2010-02-24 19:51:00,254  Processed 140000 users
 2010-02-24 19:51:00,284  Processed 150000 users
 2010-02-24 19:51:00,298  Processed 160000 users
 2010-02-24 19:51:00,302  Processed 162291 users
 2010-02-24 19:51:05,254  Retrieving new recommendations for user ID 
'124198514856103961'
 2010-02-24 19:51:05,254  Recommending items for user ID '124198514856103961'
 2010-02-24 19:52:00,228  Recommendations are: 
[RecommendedItem[item:6710022688720561421, value:0.005021
555], RecommendedItem[item:-9152989315951376207, value:0.00500819], 
RecommendedItem[item:-10610960939022
57025, value:0.00500819], RecommendedItem[item:-3145875224888183517, 
value:0.0047857966], RecommendedIte
m[item:4764651006754212795, value:0.004762556], 
RecommendedItem[item:6530066880626179760, value:0.004762
132], RecommendedItem[item:5360311107615737665, value:0.004639993], 
RecommendedItem[item:162168311040648
6210, value:0.004639993], RecommendedItem[item:-6562592997555071847, 
value:0.004632245], RecommendedItem
[item:8239589664710936158, value:0.0046123066]]
 2010-02-24 19:52:00,228  Evaluated with user 124198514856103961 in 60233ms
 2010-02-24 19:52:00,228  Precision/recall/fall-out: 0.0 / 0.0 / 
9.119404271753251E-5
[...]


Reply via email to