Broken pipe on streaming job can lead to truncated output for a successful job
------------------------------------------------------------------------------
Key: MAPREDUCE-3790
URL: https://issues.apache.org/jira/browse/MAPREDUCE-3790
Project: Hadoop Map/Reduce
Issue Type: Bug
Components: contrib/streaming
Affects Versions: 0.23.1, 0.24.0
Reporter: Jason Lowe
If a streaming job doesn't consume all of its input then the job can be marked
successful even though the job's output is truncated.
Here's a simple setup that can exhibit the problem. Note that the job output
will most likely be truncated compared to the same job run with a zero-length
input file.
{code}
$ hdfs dfs -cat in
foo
$ yarn jar ./share/hadoop/tools/lib/hadoop-streaming-0.24.0-SNAPSHOT.jar
-Dmapred.map.tasks=1 -Dmapred.reduce.tasks=1 -mapper /bin/env -reducer NONE
-input in -output out
{code}
Examining the map task log shows this:
{code:title=Excerpt from map task stdout log}
2012-02-02 11:27:25,054 WARN [main] org.apache.hadoop.streaming.PipeMapRed:
java.io.IOException: Broken pipe
2012-02-02 11:27:25,054 INFO [main] org.apache.hadoop.streaming.PipeMapRed:
mapRedFinished
2012-02-02 11:27:25,056 WARN [Thread-12]
org.apache.hadoop.streaming.PipeMapRed: java.io.IOException: Bad file descriptor
2012-02-02 11:27:25,124 INFO [main] org.apache.hadoop.mapred.Task:
Task:attempt_1328203555769_0001_m_000000_0 is done. And is in the process of
commiting
2012-02-02 11:27:25,127 WARN [Thread-11]
org.apache.hadoop.streaming.PipeMapRed: java.io.IOException: DFSOutputStream is
closed
2012-02-02 11:27:25,199 INFO [main] org.apache.hadoop.mapred.Task: Task
attempt_1328203555769_0001_m_000000_0 is allowed to commit now
2012-02-02 11:27:25,225 INFO [main]
org.apache.hadoop.mapred.FileOutputCommitter: Saved output of task
'attempt_1328203555769_0001_m_000000_0' to
hdfs://localhost:9000/user/somebody/out/_temporary/1
2012-02-02 11:27:27,834 INFO [main] org.apache.hadoop.mapred.Task: Task
'attempt_1328203555769_0001_m_000000_0' done.
{code}
In PipeMapRed.mapRedFinished() we can see it will eat IOExceptions and return
without waiting for the output threads or throwing a runtime exception to fail
the job. Net result is that the DFS streams could be shutdown too early if the
output threads are still busy and we could lose job output.
Fixing this brings up the bigger question of what *should* happen when a
streaming job doesn't consume all of its input. Should we have grabbed all of
the output from the job and still marked it successful or should we have failed
the job? If the former then we need to fix some other places in the code as
well, since feeding a much larger input file (e.g.: 600K) to the same sample
streaming job results in the job failing with the exception below. It wouldn't
be consistent to fail the job that doesn't consume a lot of input but pass the
job that leaves just a few leftovers.
{code}
2012-02-02 10:29:37,220 INFO mapreduce.Job (Job.java:monitorAndPrintJob(1270))
- Running job: job_1328200108174_0001
2012-02-02 10:29:44,354 INFO mapreduce.Job (Job.java:monitorAndPrintJob(1291))
- Job job_1328200108174_0001 running in uber mode : false
2012-02-02 10:29:44,355 INFO mapreduce.Job (Job.java:monitorAndPrintJob(1298))
- map 0% reduce 0%
2012-02-02 10:29:46,394 INFO mapreduce.Job (Job.java:printTaskEvents(1386)) -
Task Id : attempt_1328200108174_0001_m_000000_0, Status : FAILED
Error: java.io.IOException: Broken pipe
at java.io.FileOutputStream.writeBytes(Native Method)
at java.io.FileOutputStream.write(FileOutputStream.java:282)
at java.io.BufferedOutputStream.write(BufferedOutputStream.java:105)
at
java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:65)
at java.io.BufferedOutputStream.write(BufferedOutputStream.java:109)
at java.io.DataOutputStream.write(DataOutputStream.java:90)
at
org.apache.hadoop.streaming.io.TextInputWriter.writeUTF8(TextInputWriter.java:72)
at
org.apache.hadoop.streaming.io.TextInputWriter.writeValue(TextInputWriter.java:51)
at org.apache.hadoop.streaming.PipeMapper.map(PipeMapper.java:106)
at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:54)
at org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:34)
at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:394)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:329)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:147)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:396)
at
org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1177)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:142)
{code}
Assuming the job returns a successful exit code, I think we should allow the
job to complete successfully even though it doesn't consume all of its inputs.
Part of the reasoning is that there's already this comment in PipeMapper.java
that implies we desire that behavior:
{code:title=PipeMapper.java}
// terminate with success:
// swallow input records although the stream processor failed/closed
{code}
--
This message is automatically generated by JIRA.
If you think it was sent incorrectly, please contact your JIRA administrators:
https://issues.apache.org/jira/secure/ContactAdministrators!default.jspa
For more information on JIRA, see: http://www.atlassian.com/software/jira