I was playing around with images.BboxImage, and found that if I displayed,
say a 100x100 image at its native resolution (exactly 100x100 pixels on the
plotting window), it was blurred.  This is because of the interpolation
jumping in and interpolating when it is not needed.

This might not be the best way to fix, but it does work....in matplotlib
1.0.0, it is image.py around line 1102 (this is BboxImage.make_image).  Just
after numrows and numcols is set in that routine, do

 if (r-l) == numcols and (t-b) == numrows:
            im.set_interpolation(0)

As you can see, all this does is just flip the interpolation off if the size
of the image is the same size that it is about to be rendered as...and the
regular interpolation is used otherwise.


I do apologize for the lack of a proper patch, but for little things like
this I think a word description works as well or better; I need to sit down
and both learn git and set of a development environment for matplotlib, but
after reading through the docs on the web site about it, decided that would
take me more time than I had at the moment.


In context:

    def make_image(self, renderer, magnification=1.0):
        if self._A is None:
            raise RuntimeError('You must first set the image array or the
image attribute')

        if self._imcache is None:
            if self._A.dtype == np.uint8 and len(self._A.shape) == 3:
                im = _image.frombyte(self._A, 0)
                im.is_grayscale = False
            else:
                if self._rgbacache is None:
                    x = self.to_rgba(self._A, self._alpha)
                    self._rgbacache = x
                else:
                    x = self._rgbacache
                im = _image.fromarray(x, 0)
                if len(self._A.shape) == 2:
                    im.is_grayscale = self.cmap.is_gray()
                else:
                    im.is_grayscale = False
            self._imcache = im

            if self.origin=='upper':
                im.flipud_in()
        else:
            im = self._imcache

        # image input dimensions
        im.reset_matrix()

        im.set_interpolation(self._interpd[self._interpolation])



        im.set_resample(self._resample)

        l, b, r, t = self.get_window_extent(renderer).extents #bbox.extents
        widthDisplay = (round(r) + 0.5) - (round(l) - 0.5)
        heightDisplay = (round(t) + 0.5) - (round(b) - 0.5)
        widthDisplay *= magnification
        heightDisplay *= magnification

        numrows, numcols = self._A.shape[:2]

        if (r-l) == numcols and (t-b) == numrows:    # <-----------------
add this
            im.set_interpolation(0)
#<-------------- and this

        # resize viewport to display
        rx = widthDisplay / numcols
        ry = heightDisplay  / numrows
        #im.apply_scaling(rx*sx, ry*sy)
        im.apply_scaling(rx, ry)
        #im.resize(int(widthDisplay+0.5), int(heightDisplay+0.5),
        #          norm=self._filternorm, radius=self._filterrad)
        im.resize(int(widthDisplay), int(heightDisplay),
                  norm=self._filternorm, radius=self._filterrad)
        return im


-- 
Daniel Hyams
dhy...@gmail.com
------------------------------------------------------------------------------
All the data continuously generated in your IT infrastructure contains a
definitive record of customers, application performance, security
threats, fraudulent activity and more. Splunk takes this data and makes
sense of it. Business sense. IT sense. Common sense.
http://p.sf.net/sfu/splunk-d2d-oct
_______________________________________________
Matplotlib-devel mailing list
Matplotlib-devel@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-devel

Reply via email to