Dear All, I am sending this email out of frustration, but I hope that someone will be able to tell me what is going on. I am using pylab on a Debian testing box. I have the feeling that there is some problem with pylab when I alternate, as I am doing now, many linear and log-log plots. Very often, pylab complains about the fact that I cannot take the log of a negative number even if all the quantities are positive or even if I have replaced the loglog with a linear plot... An example (sorry but there are long arrays involved and I cannot reproduce all my code here):
#! /usr/bin/env python import scipy as s import numpy as n import pylab as p #from rpy import r #import distance_calc as d_calc # now I try performing a least-square fitting import scipy.optimize as sopt #do my stuff here print "my_n_clus_fit is, ", my_n_clus_fit print "my_r_sq_fit",my_r_sq_fit print "n_clu_rep2 is, ", n_clu_rep2 print "R_sq is", R_sq p.plot(n_clu_rep2,R_sq,"bo",my_n_clus_fit,my_r_sq_fit, "ro") p.xlabel('particles in cluster') p.ylabel('R square') #p.legend(('beta=1e-2,100 part','beta=1e-1, 100 part', 'beta=1e-1, 200 part')) p.title('Cluster-size vs average radius of gyration') p.grid(True) p.savefig("R_gyr_vs_N_fit.pdf") p.hold(False) and the relevant part of the output is: my_n_clus_fit is, [ 1.73717793 1.80682874 1.87927215 1.95462012 2.03298911 2.11450025 2.19927951 2.28745793 2.3791718 2.47456287 2.57377856 2.67697224 2.78430338 2.89593788 3.01204829 3.13281405 3.25842182 3.38906574 3.52494773 3.66627779 3.81327439 3.96616469 4.12518502 4.29058114 4.46260869 4.64153356 4.82763228 5.02119248 5.22251334 5.43190599 5.64969409 5.87621423 6.11181652 6.35686511 6.61173873 6.87683131 7.15255258 7.43932868 7.73760284 8.04783608 8.37050788 8.70611696 9.05518203 9.41824259 9.79585979 10.18861726 10.59712204 11.0220055 11.46392434 11.92356157 12.40162761 12.89886134 13.41603127 13.95393673 14.5134091 15.09531308 15.70054806 16.33004946 16.98479025 17.66578236 18.37407832 19.11077287 19.87700462 20.67395784 21.50286429 22.3650051 23.26171279 24.19437329 25.16442809 26.17337649 27.22277791 28.31425426 29.44949252 30.63024729 31.85834351 33.13567931 34.4642289 35.84604567 37.28326532 38.77810918 40.33288767 41.9500038 43.63195696 45.38134673 47.20087695 49.09335983 51.06172036 53.10900079 55.23836536 57.45310516 59.75664325 62.15253993 64.64449825 67.23636972 69.93216028 72.73603649 75.65233197 78.68555407 81.84039088 85.12171845] my_r_sq_fit [ -2.44174991 -2.39098053 -2.3384157 -2.28399191 -2.22764342 -2.16930217 -2.10889768 -2.04635699 -1.98160454 -1.91456212 -1.84514875 -1.77328057 -1.69887077 -1.62182947 -1.5420636 -1.45947681 -1.37396934 -1.2854379 -1.19377555 -1.09887155 -1.00061127 -0.89887602 -0.7935429 -0.68448467 -0.5715696 -0.45466128 -0.3336185 -0.20829504 -0.07853952 0.05580481 0.19490022 0.33891475 0.48802235 0.64240314 0.80224361 0.96773685 1.13908274 1.31648829 1.50016779 1.69034312 1.88724399 2.09110827 2.30218221 2.52072078 2.74698797 2.98125709 3.22381115 3.47494314 3.73495641 4.00416505 4.28289426 4.57148072 4.87027305 5.17963218 5.49993179 5.8315588 6.1749138 6.53041155 6.89848148 7.27956821 7.67413208 8.0826497 8.50561455 8.94353755 9.3969477 9.86639271 10.35243964 10.85567563 11.37670856 11.91616783 12.47470507 13.05299499 13.65173614 14.27165177 14.91349073 15.57802832 16.26606729 16.97843877 17.71600327 18.47965174 19.27030664 20.08892307 20.93648986 21.81403087 22.72260612 23.66331314 24.63728827 25.64570804 26.68979058 27.77079711 28.89003345 30.04885158 31.24865133 32.49088201 33.77704418 35.10869149 36.48743251 37.91493273 39.3929165 40.92316917] n_clu_rep2 is, [ 4. 5. 6. 7. 8. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 27. 28. 30. 31. 32. 33. 34. 35. 36. 37. 38. 40. 41. 42. 43. 44. 45. 46. 47. 48. 50. 51. 54. 55. 56. 57. 58. 61. 62. 63. 67. 68. 72. 74. 77. 85. 86. 89. 91. 92. 93. 99. 108. 113. 114. 120. 145. 196.] R_sq is [ 0.41290231 0.63219481 0.50921663 0.60545032 0.71055003 1.24577182 1.01656939 1.35542652 1.68938719 1.96960734 1.8587407 1.25335718 3.38501487 1.73960942 2.66786771 0.78304002 1.9472814 2.59527354 2.82129068 1.95855193 3.97830788 2.42530912 4.77505413 8.87282622 2.6755995 3.53707475 1.36507753 3.87191511 6.63215895 3.45373196 8.22450598 5.15409505 3.28241933 11.51525185 1.11042409 4.69324094 4.337342 7.0230309 6.98027636 2.10322888 3.63283609 3.69895425 2.39382279 24.86394803 6.14874073 6.59253038 7.7958188 20.11261061 9.22805741 1.60984999 4.08915341 13.37680959 10.7330271 9.19988106 18.86681803 16.01119253 16.7679522 12.83288125 28.15284186 2.96382532 28.60613768 10.38346233 24.59404975 3.06332058 120.46780399 29.27275139 25.00389411 17.40801449 21.23510666] Traceback (most recent call last): File "./r_gyr.py", line 322, in ? p.plot(n_clu_rep2,R_sq,"bo",my_n_clus_fit,my_r_sq_fit, "ro") File "/usr/lib/python2.4/site-packages/matplotlib/pylab.py", line 2028, in plot ret = gca().plot(*args, **kwargs) File "/usr/lib/python2.4/site-packages/matplotlib/axes.py", line 2540, in plot self.autoscale_view(scalex=scalex, scaley=scaley) File "/usr/lib/python2.4/site-packages/matplotlib/axes.py", line 1207, in autoscale_view self.set_xlim(XL) File "/usr/lib/python2.4/site-packages/matplotlib/axes.py", line 1493, in set_xlim raise ValueError('Cannot set nonpositive limits with log transform') ValueError: Cannot set nonpositive limits with log transform But there is no log transform here! True, before I was plotting n_clu_rep2 and R_sq in a loglog plot, but this should not be a problem. Is there anything wrong with: p.plot(n_clu_rep2,R_sq,"bo",my_n_clus_fit,my_r_sq_fit, "ro") p.xlabel('particles in cluster') p.ylabel('R square') #p.legend(('beta=1e-2,100 part','beta=1e-1, 100 part', 'beta=1e-1, 200 part')) p.title('Cluster-size vs average radius of gyration') p.grid(True) p.savefig("R_gyr_vs_N_fit.pdf") p.hold(False) ?? It looks like pylab is not able to "forget" the previous plots. Any help here is really appreciated. Many thanks Lorenzo ------------------------------------------------------------------------- This SF.net email is sponsored by: Microsoft Defy all challenges. Microsoft(R) Visual Studio 2008. http://clk.atdmt.com/MRT/go/vse0120000070mrt/direct/01/ _______________________________________________ Matplotlib-users mailing list Matplotlib-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/matplotlib-users