On 10/12/11 8:20 PM, questions anon wrote:
Hi All,
I keep receiving a memory error when processing many netcdf files. I assumed it had something to do with how I loop things and maybe needed to close things off properly but I recently received an error that made me think it might be because of matplotlib.

In the code below I am looping through a bunch of netcdf files (each file is hourly data for one month) and within each netcdf file I am outputting a *png file every three hours. This works for one netcdf file (therefore one month) but when it begins to process the next netcdf file I receive a memory error (see below). Since I have tidied some of my code up it seems to process partly into the second file but then I still receive the memory error.
I have tried a few suggestions such as:
-Combining the dataset using MFDataset (using NETCDF4) is not an option because the files do not have unlimited dimension. - gc.collect() but that just results in a /GEOS_ERROR: bad allocation error/.
-only open LAT and LON once (which worked)

System Details:
Python 2.7.2 |EPD 7.1-2 (32-bit)| (default, Jul 3 2011, 15:13:59) [MSC v.1500 32 bit (Intel)] on win32

Any feedback will be greatly appreciated as I seem to keep ending up with memory errors when working with netcdf files this even happens if I am using a much better computer.

*Most recent error: *
Traceback (most recent call last):
File "C:\plot_netcdf_merc_multiplot_across_multifolders_TSFC.py", line 78, in <module> plt.savefig((os.path.join(outputfolder, 'TSFC'+date_string+'UTC.png'))) File "C:\Python27\lib\site-packages\matplotlib\pyplot.py", line 363, in savefig
    return fig.savefig(*args, **kwargs)
File "C:\Python27\lib\site-packages\matplotlib\figure.py", line 1084, in savefig
    self.canvas.print_figure(*args, **kwargs)
File "C:\Python27\lib\site-packages\matplotlib\backends\backend_wxagg.py", line 100, in print_figure
    FigureCanvasAgg.print_figure(self, filename, *args, **kwargs)
File "C:\Python27\lib\site-packages\matplotlib\backend_bases.py", line 1923, in print_figure
    **kwargs)
File "C:\Python27\lib\site-packages\matplotlib\backends\backend_agg.py", line 438, in print_png
    FigureCanvasAgg.draw(self)
File "C:\Python27\lib\site-packages\matplotlib\backends\backend_agg.py", line 393, in draw
    self.renderer = self.get_renderer()
File "C:\Python27\lib\site-packages\matplotlib\backends\backend_agg.py", line 404, in get_renderer
    self.renderer = RendererAgg(w, h, self.figure.dpi)
File "C:\Python27\lib\site-packages\matplotlib\backends\backend_agg.py", line 59, in __init__ self._renderer = _RendererAgg(int(width), int(height), dpi, debug=False)
RuntimeError: Could not allocate memory for image

*Error when I added gc.collect()*
GEOS_ERROR: bad allocation

*Old error (before adding gc.collect() )*
/Traceback (most recent call last):
File "d:/plot_netcdf_merc_multiplot_across_multifolders__memoryerror.py", line 44, in <module>
    TSFC=ncfile.variables['T_SFC'][1::3]
File "netCDF4.pyx", line 2473, in netCDF4.Variable.__getitem__ (netCDF4.c:23094)
MemoryError/



from netCDF4 import Dataset
import numpy as N
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from netcdftime import utime
from datetime import datetime
import os
import gc


shapefile1="E:/

    griddeddatasamples/GIS/DSE_REGIONS"
    MainFolder=r"E:/griddeddatasamples/GriddedData/InputsforValidation/T_SFC/"
    OutputFolder=r"E:/griddeddatasamples/GriddedData/OutputsforValidation"
    
fileforlatlon=Dataset("E:/griddeddatasamples/GriddedData/InputsforValidation/T_SFC/TSFC_1974_01/IDZ00026_VIC_ADFD_T_SFC.nc",
    'r+', 'NETCDF4')
    LAT=fileforlatlon.variables['latitude'][:]
    LON=fileforlatlon.variables['longitude'][:]

    for (path, dirs, files) in os.walk(MainFolder):
        for dir in dirs:
            print dir
        path=path+'/'
        for ncfile in files:
            if ncfile[-3:]=='.nc':
                print "dealing with ncfiles:", ncfile
                ncfile=os.path.join(path,ncfile)
                ncfile=Dataset(ncfile, 'r+', 'NETCDF4')
                TSFC=ncfile.variables['T_SFC'][1::3]
                TIME=ncfile.variables['time'][1::3]
                ncfile.close()
                gc.collect()

                for TSFC, TIME in zip((TSFC[:]),(TIME[:])):
                    cdftime=utime('seconds since 1970-01-01 00:00:00')
                    ncfiletime=cdftime.num2date(TIME)
                    print ncfiletime
                    timestr=str(ncfiletime)
                    d = datetime.strptime(timestr, '%Y-%m-%d %H:%M:%S')
                    date_string = d.strftime('%Y%m%d_%H%M')

                    map =
    Basemap(projection='merc',llcrnrlat=-40,urcrnrlat=-33,
llcrnrlon=139.0,urcrnrlon=151.0,lat_ts=0,resolution='i')
                    x,y=map(*N.meshgrid(LON,LAT))
                    map.drawcoastlines(linewidth=0.5)
                    map.readshapefile(shapefile1, 'DSE_REGIONS')
                    map.drawstates()

                    plt.title('Surface temperature at %s UTC'%ncfiletime)
                    ticks=[-5,0,5,10,15,20,25,30,35,40,45,50]
                    CS = map.contourf(x,y,TSFC, ticks, cmap=plt.cm.jet)
                    l,b,w,h =0.1,0.1,0.8,0.8
                    cax = plt.axes([l+w+0.025, b, 0.025, h], )
                    cbar=plt.colorbar(CS, cax=cax, drawedges=True)

                    plt.savefig((os.path.join(OutputFolder,
    'TSFC'+date_string+'UTC.png')))
                    plt.close()
                    gc.collect()


Try moving these lines

map = Basemap(projection='merc',llcrnrlat=-40,urcrnrlat=-33, llcrnrlon=139.0,urcrnrlon=151.0,lat_ts=0,resolution='i')
                x,y=map(*N.meshgrid(LON,LAT))
                map.drawcoastlines(linewidth=0.5)
                map.readshapefile(shapefile1, 'DSE_REGIONS')
                map.drawstates()

out of the loop.

-Jeff
------------------------------------------------------------------------------
All the data continuously generated in your IT infrastructure contains a
definitive record of customers, application performance, security
threats, fraudulent activity and more. Splunk takes this data and makes
sense of it. Business sense. IT sense. Common sense.
http://p.sf.net/sfu/splunk-d2d-oct
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users

Reply via email to