http://www.nasa.gov/mission_pages/kepler/news/two_planet_orbit.html

NASA's Kepler spacecraft has discovered the first confirmed planetary
system with more than one planet crossing in front of, or transiting,
the same star.

The transit signatures of two distinct planets were seen in the data for
the sun-like star designated Kepler-9. The planets were named Kepler-9b
and 9c. The discovery incorporates seven months of observations of more
than 156,000 stars as part of an ongoing search for Earth-sized planets
outside our solar system. The findings will be published in Thursday's
issue of the journal Science.

Kepler's ultra-precise camera measures tiny decreases in the stars'
brightness that occur when a planet transits them. The size of the
planet can be derived from these temporary dips.

The distance of the planet from the star can be calculated by measuring
the time between successive dips as the planet orbits the star. Small
variations in the regularity of these dips can be used to determine the
masses of planets and detect other non-transiting planets in the system.

In June, mission scientists submitted findings for peer review that
identified more than 700 planet candidates in the first 43 days of
Kepler data. The data included five additional candidate systems that
appear to exhibit more than one transiting planet. The Kepler team
recently identified a sixth target exhibiting multiple transits and
accumulated enough follow-up data to confirm this multi-planet system.

"Kepler's high quality data and round-the-clock coverage of transiting
objects enable a whole host of unique measurements to be made of the
parent stars and their planetary systems," said Doug Hudgins, the Kepler
program scientist at NASA Headquarters in Washington.

Scientists refined the estimates of the masses of the planets using
observations from the W.M. Keck Observatory in Hawaii. The observations
show Kepler-9b is the larger of the two planets, and both have masses
similar to but less than Saturn. Kepler-9b lies closest to the star with
an orbit of about 19 days, while Kepler-9c has an orbit of about 38
days. By observing several transits by each planet over the seven months
of data, the time between successive transits could be analyzed.

"This discovery is the first clear detection of significant changes in
the intervals from one planetary transit to the next, what we call
transit timing variations," said Matthew Holman, a Kepler mission
scientist from the Harvard-Smithsonian Center for Astrophysics in
Cambridge, Mass. "This is evidence of the gravitational interaction
between the two planets as seen by the Kepler spacecraft."

In addition to the two confirmed giant planets, Kepler scientists also
have identified what appears to be a third, much smaller transit
signature in the observations of Kepler-9. That signature is consistent
with the transits of a super-Earth-sized planet about 1.5 times the
radius of Earth in a scorching, near-sun 1.6 day-orbit. Additional
observations are required to determine whether this signal is indeed a
planet or an astronomical phenomenon that mimics the appearance of a
transit.

NASA's Ames Research Center in Moffett Field, Calif., manages Kepler's
ground system development, mission operations and science data analysis.
NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler
mission development.

Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the
Kepler flight system and supports mission operations with the Laboratory
for Atmospheric and Space Physics at the University of Colorado in
Boulder. The Space Telescope Science Institute in Baltimore archives,
hosts and distributes the Kepler science data.

For more information about the Kepler mission, visit:

http://www.nasa.gov/kepler
_______________________________________________
Medianews mailing list
Medianews@etskywarn.net
http://lists.etskywarn.net/mailman/listinfo/medianews

Reply via email to