Yeah, that would be an honour for me to make a contribution to Metamath. 
Sure, I want to solve few technical issues, test them during some time and 
then you can add links.

I also thought regarding unicode symbols. I will spend some time to try to 
add possibility to show both ascii and unicode symbols (but I don't promise 
to do it fast enough because of lack of time :) )

Actually I've just figured out that I can use this feature of metamath.exe 
to verify what my program generates. This is not straightforward though but 
possible. 

I will write a message when I think this my visualisation is stable enough 
so we can start adding links.

Best regards,
Igor

вторник, 8 декабря 2020 г. в 17:13:15 UTC+1, Norman Megill: 

> When this becomes stable, I can add a link to your version on each theorem 
> page of the main site, like the link that now says "Structured version" for 
> Thierry's pages.  This will let you have direct control over your content.  
> (To start with, your base URL would be hard-coded in metamath.exe, but 
> later I can add a keyword to the $t statement in set.mm so the URL can be 
> maintained there.)
>
> I don't know your long term plans, but I'll mention that personally 
> (although I may be in the minority) I don't mind the ASCII notation in the 
> proofs.  It shows a beginner the direct relationship to the set.mm source 
> and allows easy copy/paste.  The user can also see the direct relationship 
> between the ASCII and the Unicode rendering by switching between your page 
> and the standard page, without having to consult set.mm or the awkward 
> "ASCII Symbol Equivalents" page.
>
> BTW although of course it's not as convenient as your pages, some people 
> might not know that metamath.exe can show the substitutions made in a step:
>
> MM> show proof 2p2e4 /detailed_step 18
> Proof step 18:  eqtr4i.1=oveq2i $p |- ( 2 + 2 ) = ( 2 + ( 1 + 1 ) )
> This step assigns source "oveq2i" ($p) to target "eqtr4i.1" ($e).  The 
> source
> assertion requires the hypotheses "cA" ($f, step 13), "cB" ($f, step 14), 
> "cC"
> ($f, step 15), "cF" ($f, step 16), and "oveq1i.1" ($e, step 17).  The 
> parent
> assertion of the target hypothesis is "eqtr4i" ($p, step 47).
> The source assertion before substitution was:
>     oveq2i $p |- ( C F A ) = ( C F B )
> The following substitutions were made to the source assertion:
>     Variable  Substituted with
>      C         2
>      F         +
>      A         2
>      B         ( 1 + 1 )
> The target hypothesis before substitution was:
>     eqtr4i.1 $e |- A = B
> The following substitutions were made to the target hypothesis:
>     Variable  Substituted with
>      A         ( 2 + 2 )
>      B         ( 2 + ( 1 + 1 ) )
>
> Norm
>
>
> On Tuesday, December 8, 2020 at 9:27:57 AM UTC-5 [email protected] wrote:
>
>> Norm, Jim, thanks for your feedback!
>>
>> I updated the proof visualisation - all steps are collapsed by default 
>> and a [+] button will expand selected node. Examples:
>> http://metamath.d4-e5.de/v2/data/2p/2e/2p2e4.html
>> http://metamath.d4-e5.de/v2/data/sq/rt/2i/sqrt2irr.html
>> http://metamath.d4-e5.de/index.html
>>
>> Also offline version may be found here 
>> https://drive.google.com/drive/folders/1na2UM270rsCd85BQCmaJJSnak8HywfL8?usp=sharing
>>  (its 
>> size is 500M when unarchived).
>>
>> At the moment, step numbers in my proof visualisation don't correspond to 
>> step numbers on http://us.metamath.org in many cases. This is because of 
>> duplicate steps in my visualisation. I will fix this.
>>
>> Best regards,
>> Igor
>>
>> вторник, 1 декабря 2020 г. в 03:22:00 UTC+1, [email protected]: 
>>
>>> On 11/30/20 6:03 PM, Paul Chapman wrote: 
>>>
>>> > I may be getting too old/lazy to code. Thirty years ago I’d’ve written 
>>> > a knockout replacement for mmj2. ;) 
>>>
>>> Haha I'll let you be the judge of whether you are too old/lazy to code. 
>>>
>>> But if you are just disinclined to shave all the yaks required to get a 
>>> smalltalk compatible with that experiment running again, hey that 
>>> strikes me as quite understandable quite aside from age. Quite a saga. 
>>>
>>>
>>>

-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion on the web visit 
https://groups.google.com/d/msgid/metamath/feed3226-2399-43a5-9a62-9475d3e7f329n%40googlegroups.com.

Reply via email to