I proved the fourth theorem. It seems one hypothesis is not needed.

This proof is way too long so probably I used a very inefficient approach.

${
  $( The Eckmann-Hilton argument. If for two unital magmas, represented 
here by the operation ` .o. ` with unit ` E `
     and the operation ` .(x) ` with unit ` I ` , on the same base set ` B 
` an identity ` ( ( a .(x) b ) .o. ( c .(x) d ) ) = ( ( a .o. c ) .(x) ( b 
.o. d ) ) `
     holds, then these magmas coincide and the operation is associative and 
commutative. $)
  $d a b c d e v B $.  $d a b c d e v E $.  $d a b c d e v I $.
  $d a b c d e v .o. $.  $d a b c d e v .(x) $.  $d a b c d e v ph $.
  eckmannhilton.a $e |- ( ph -> A. a e. B A. b e. B ( a .o. b ) e. B ) $.
  eckmannhilton.c $e |- ( ph -> A. a e. B ( ( a .o. E ) = a /\ ( E .o. a ) 
= a ) ) $.
  eckmannhilton.d $e |- ( ph -> A. a e. B ( ( a .(x) I ) = a /\ ( I .(x) a 
) = a ) ) $.
  eckmannhilton.e $e |- ( ph -> ( E e. B /\ I e. B ) ) $.
  eckmannhilton.f $e |- ( ph -> A. a e. B A. b e. B A. c e. B A. d e. B ( ( 
a .(x) b ) .o. ( c .(x) d ) ) = ( ( a .o. c ) .(x) ( b .o. d ) ) ) $.

  iden $p |- ( ph -> E = I ) $=
    ( co wceq wral oveq2 eqeq12d cv wa r19.26 simpld wb id bitrdi adantl 
rspcdv
    wcel eqcom adantld syl5bi mpd syl6ib adantrd oveq12d oveq1d 2ralbidv 
oveq2d
    oveq1 simprd eqidd rspc2vd syld 3eqtrd ) 
ADDDFPZEECPZEAGUAZDFPZVIQZDVIFPZVI
    
QZUBGBRZDVGQZLVNVKGBRZVMGBRZUBZAVOVKVMGBUCZAVQVOVPAVMVOGDBADBUJZEBUJZNUDZVI
    
DQZVMVOUEAWCVMVGDQVOWCVLVGVIDVIDDFSWCUFZTVGDUKUGUHUIULUMUNAVGEDCPZDECPZFPZE
    
DFPZDEFPZCPZVHADWEDWFFAVIECPZVIQZEVICPZVIQZUBGBRZDWEQZMWOWLGBRZWNGBRZUBZAWP
    
WLWNGBUCZAWRWPWQAWRWEDQZWPAWNXAGDBWBWCWNXAUEAWCWMWEVIDVIDECSWDTUHUIWEDUKUOU
    
LUMUNAWODWFQZMWOWSAXBWTAWQXBWRAWQWFDQZXBAWLXCGDBWBWCWLXCUEAWCWKWFVIDVIDECVA
    
WDTUHUIWFDUKUOUPUMUNUQAVIHUAZCPZIUAZJUAZCPZFPZVIXFFPZXDXGFPZCPZQZJBRIBRZHBR
    
GBRZWGWJQZOAXOWEXHFPZEXFFPZDXGFPZCPZQZJBRIBRZXPAYBEXDCPZXHFPZXRXKCPZQZJBRIB
    
RXNGHEDBBBVIEQZXMYFIJBBYGXIYDXLYEYGXEYCXHFVIEXDCVAURYGXJXRXKCVIEXFFVAURTUSX
    
DDQZYFYAIJBBYHYDXQYEXTYHYCWEXHFXDDECSURYHXKXSXRCXDDXGFVAUTTUSAVTWANVBZAYGUB
    
BVCWBVDAXPWEDXGCPZFPZWHXSCPZQYAIJDEBBBXFDQZXQYKXTYLYMXHYJWEFXFDXGCVAUTYMXRW
    
HXSCXFDEFSURTXGEQZYKWGYLWJYNYJWFWEFXGEDCSUTYNXSWIWHCXGEDFSUTTWBAYMUBBVCYIVD
    
VEUNAWHEWIECAVNWHEQZLVNVRAYOVSAVPYOVQAVKYOGEBYIYGVKYOUEAYGVJWHVIEVIEDFVAYGU
    
FZTUHUIUPUMUNAVNWIEQZLVNVRAYQVSAVQYQVPAVMYQGEBYIYGVMYQUEAYGVLWIVIEVIEDFSYPT
    
UHUIULUMUNUQVFAWOVHEQZMWOWSAYRWTAWRYRWQAWNYRGEBYIYGWNYRUEAYGWMVHVIEVIEECSYP
    TUHUIULUMUNVF $.

  mcoinc $p |- ( ph -> A. a e. B A. b e. B ( a .o. b ) = ( a .(x) b ) ) $=
    ( co wceq wral wa ralimi cv wi syl r19.26 iden oveq2d eqeq1d biimpd 
ralimdv
    simpl adantrd syl5bi mpd sylanbrc ralrimivw ralcom sylib oveq1d adantld 
weq
    simpr oveq2 id eqeq12d anbi12d biimpri sylbir syl2anc simpll simprl 
oveq12d
    cbvralvw simplr simprr ralim 3syl ralbii sylbb anim2i 2ralbidv simprd 
eqidd
    wcel rspc2vd imp biimpi sylc ) 
AGUAZECPZEHUAZCPZFPZWHEFPZEWJFPZCPZQZHBRZWHW
    
JFPZWHWJCPZQZHBRZUBZGBRZWQGBRZXAGBRAWIWHQZWMWHQZSZWKWJQZWNWJQZSZSZHBRZGBRZW
    
PWTUBZHBRZGBRXCAXGHBRZGBRZXJHBRZGBRZXMAXGGBRZHBRXQAXTHBAXEGBRZXFGBRZXTAXEEW
    
HCPZWHQZSZGBRZYAMYEXEGBXEYDUJTUCAWHDFPZWHQZDWHFPZWHQZSZGBRZYBLYLYHGBRZYJGBR
    
ZSAYBYHYJGBUDAYMYBYNAYHXFGBAYHXFAYGWMWHADEWHFABCDEFGHIJKLMNOUEZUFUGUHUIUKUL
    
UMXEXFGBUDUNUOXGHGBBUPUQAXRGBAYDEWHFPZWHQZSZGBRZXRAYDGBRZYQGBRZYSAYFYTMYEYD
    
GBXEYDVATUCAYLUUALAYKYQGBAYJYQYHAYJYQAYIYPWHADEWHFYOURUGUHUSUIUMYDYQGBUDUNY
    
RXJGHBGHUTZYDXHYQXIUUBYCWKWHWJWHWJECVBUUBVCZVDUUBYPWNWHWJWHWJEFVBUUCVDVEVLU
    
QUOXQXSSXPXRSZGBRXMXPXRGBUDUUDXLGBXLUUDXGXJHBUDVFTVGVHXLXOGBXKXNHBXKWPWTXKW
    
LWRWOWSXKWIWHWKWJFXEXFXJVIXGXHXIVJVKXKWMWHWNWJCXEXFXJVMXGXHXIVNVKVDUHTTXOXB
    
GBWPWTHBVOTVPAWIEJUAZCPZFPZWMEUUEFPZCPZQZJBRZGBRZXDAAWSIUAZUUECPZFPZWHUUMFP
    
ZWJUUEFPZCPZQZJBRZGBRZIBRZHBRZSZUULAAUUTIBRZHBRGBRZUVDAVCOUVFUVCAUVFUVEGBRZ
    
HBRUVCUVEGHBBUPUVGUVBHBUUTGIBBUPVQVRVSVHAUVCUULAUULWIUUNFPZUUPUUHCPZQZJBRGB
    
RUVAHIEEBBBWJEQZUUSUVJGJBBUVKUUOUVHUURUVIUVKWSWIUUNFWJEWHCVBURUVKUUQUUHUUPC
    
UVKWJEUUEFUVKVCURUFVDVTUUMEQZUVJUUJGJBBUVLUVHUUGUVIUUIUVLUUNUUFWIFUVLUUMEUU
    
ECUVLVCURUFUVLUUPWMUUHCUUMEWHFVBURVDVTADBWCEBWCNWAZAUVKSBWBUVMWDWEUCUUKWQGB
    
UUKWQUUJWPJHBJHUTZUUGWLUUIWOUVNUUFWKWIFUUEWJECVBUFUVNUUHWNWMCUUEWJEFVBUFVDV
    LWFTUCWQXAGBVOWG $.

  eckmannhilton $p |- ( ph -> ( E = I /\ A. a e. B A. b e. B ( ( a .o. b ) 
= ( a .(x) b ) /\ ( a .o. b ) = ( b .o. a ) ) /\
                        A. a e. B A. b e. B A. c e. B ( ( a .o. b ) .o. c ) 
= ( a .o. ( b .o. c ) ) ) ) $=
( wceq co wral syl wi vv ve cv wa iden mcoinc id ralcom ralbii bitri biimpi
    oveq1 oveq1d eqeq12d ralbidv oveq2 oveq2d wcel simpr eqidd rspc2vd 
cbvralvw
    mpd weq jca ralimi a1i com12 ralrimiv r19.26 imp bicomi eqeq1d impd 
ralimdv
    biimpd com13 oveq12 wb eqcom eqeq2 ralim simpll simplr oveq12d rspcdv 
bitrd
    imim1i idd simpllr eleq12d cbvral2vw rsp imim2i simp2 3exp syld com45 
com34
    ex com23 eqeq2d mpdd 3jca ) 
ADEPZGUCZHUCZFQZXFXGCQZPZXHXGXFFQZPZUDHBRZGBRZX
    
HIUCZFQZXFXGXOFQZFQZPZIBRZHBRZGBRZABCDEFGHIJKLMNOUEZAXJHBRZXLHBRZUDZGBRZXNA
    
YDGBRZYEGBRZUDZYGAYHYIABCDEFGHIJKLMNOUFZAAEXFCQZXGECQZFQZEXGFQZXFEFQZCQZPZH
    
BRZGBRZUDYIAAYTAUGAEXGCQZXOECQZFQZEXOFQZXGEFQZCQZPZIBRZHBRZYTAXIXOJUCZCQZFQ
    
ZXFXOFQZXGUUJFQZCQZPZIBRZHBRZJBRZGBRZUUIAUUPJBRZIBRZHBRZGBRZUUTOUVDUUTUVCUU
    
SGBUVCUUQJBRZHBRUUSUVBUVEHBUUPIJBBUHUIUUQHJBBUHUJUIUKSAUUIUUAUUKFQZUUDUUNCQ
    
ZPZIBRZHBRUURGJEEBBBXFEPZUUQUVIHBUVJUUPUVHIBUVJUULUVFUUOUVGUVJXIUUAUUKFXFEX
    
GCULUMUVJUUMUUDUUNCXFEXOFULUMUNUOUOUUJEPZUVIUUHHBUVKUVHUUGIBUVKUVFUUCUVGUUF
    
UVKUUKUUBUUAFUUJEXOCUPUQUVKUUNUUEUUDCUUJEXGFUPUQUNUOUOADBURZEBURZUDUVMNUVLU
    
VMUSSZAUVJUDBUTUVNVAVCUUIYTUUIYLUUBFQZUUDYPCQZPZIBRZGBRYTUUHUVRHGBHGVDZUUGU
    
VQIBUVSUUCUVOUUFUVPUVSUUAYLUUBFUVSXGXFECUVSUGZUQUMUVSUUEYPUUDCUVSXGXFEFUVTU
    
MUQUNUOVBUVRYSGBUVQYRIHBIHVDZUVOYNUVPYQUWAUUBYMYLFUWAXOXGECUWAUGZUMUQUWAUUD
    
YOYPCUWAXOXGEFUWBUQUMUNVBUIUJUKSVEAYTYIAYSYETZGBRZYTYITAYRXLTZHBRZGBRZUWDAY
    
LXFPZYMXGPZUDZYQXKPZUDZHBRZGBRZUWGAUWJHBRZGBRZUWKHBRZGBRZUDZUWNAUWPUWRAUWHH
    
BRZGBRZUWIHBRZGBRZUDZUWPAUXAUXCAUWHGBRZHBRZUXAAUXEHBXGBURZAUXEAUXETUXGAXFEC
    
QZXFPZUWHUDZGBRZUXEMUXJUWHGBUXIUWHUSVFSVGVHVIUXFUXAUWHHGBBUHUKSAUXBGBXFBURZ
    
AUXBAUXBTUXLAUXKUXBMUXKUXIGBRZUXEUDZUXBUXKUXNUXIUWHGBVJUKUXMUXEUXBUXEUXMUXB
    
UXMUXBTUXEUXMUXBUXIUWIGHBGHVDZUXHYMXFXGUXOXFXGECUXOUGZUMUXPUNVBUKVGVHVKSSVG
    
VHVIVEUXDUWPUXDUWTUXBUDZGBRZUWPUXRUXDUWTUXBGBVJVLUXQUWOGBUWOUXQUWHUWIHBVJVL
    
UIUJUKSAYQXGXFCQZPZHBRZGBRZUWRAYOXGPZYPXFPZUDZHBRZGBRZUYBAUYCHBRZGBRZUYDHBR
    
ZGBRZUDZUYGAUYIUYKAUYHGBUXLAUYHAUYHTUXLAEXFFQZXFPZGBRZUYHAXFDFQZXFPZDXFFQZX
    
FPZUDZGBRZUYOLAUYTUYNGBAUYQUYSUYNUYQAUYSUYNTZAVUBTUYQAUYSUYNAUYRUYMXFADEXFF
    
YCUMVMVPVGVHVNVOVCUYOUYHTAUYOUYHUYNUYCGHBUXOUYMYOXFXGXFXGEFUPUXPUNVBUKVGVCV
    
GVHVIAUYDGBRZHBRZUYKAVUCHBUXGAVUCAVUCTZUXGAXEVUCYCXEAVUCVUEXEAVUAVUCLAUYTUY
    
DGBAUYQUYSUYDUYSUYQAUYDUYQAUYDTTUYSAUYQUYDAUYQUYDAUYPYPXFADEXFFYCUQZVMVPVHV
    
GVQVNVOVCVGVHVCVGVHVIVUDUYKUYDHGBBUHUKSVEUYLUYGUYGUYLUYGUYHUYJUDZGBRUYLUYFV
    
UGGBUYCUYDHBVJUIUYHUYJGBVJUJVLUKSUYFUYAGBUYEUXTHBYOXGYPXFCVRVFVFSAUYAUWQTZG
    
BRZUYBUWRTAUXTUWKTZHBRZGBRZVUIAYHVULYKYHUAUCZUBUCZFQZVUMVUNCQZPZUBBRZUABRZV
    
ULYHVUSYHXFVUNFQZXFVUNCQZPZUBBRZGBRVUSYDVVCGBXJVVBHUBBHUBVDXHVUTXIVVAXGVUNX
    
FFUPXGVUNXFCUPUNVBUIVVCVURGUABGUAVDZVVBVUQUBBVVDVUTVUOVVAVUPXFVUMVUNFULXFVU
    
MVUNCULUNUOVBUJUKVUSXGVUNFQZXGVUNCQZPZUBBRZHBRZVULVUSVVIVURVVHUAHBUAHVDZVUQ
    
VVGUBBVVJVUOVVEVUPVVFVUMXGVUNFULVUMXGVUNCULUNUOVBUKVVIXKUXSPZGBRZHBRZVULVVI
    
VVMVVHVVLHBVVGVVKUBGBUBGVDZVVEXKVVFUXSVUNXFXGFUPVUNXFXGCUPUNVBUIUKVVMVVKHBR
    
ZGBRZVULVVMVVPVVKHGBBUHUKVVOVUKGBVVKVUJHBVVKUXTUWKVVKUXSXKPZUXTUWKVSVVKVVQX
    
KUXSVTUKUXSXKYQWASVPVFVFSSSSSVUKVUHGBUXTUWKHBWBVFSUYAUWQGBWBSVCVEUWSUWNUWNU
    
WSUWNUWOUWQUDZGBRUWSUWMVVRGBUWJUWKHBVJUIUWOUWQGBVJUJVLUKSUWMUWFGBUWLUWEHBUW
    
LYRXLUWLYNXHYQXKUWLYLXFYMXGFUWHUWIUWKWCUWHUWIUWKWDWEUWJUWKUSUNVPVFVFSUWFUWC
    
GBYRXLHBWBVFSYSYEGBWBSVKSVEYJYGYGYJYDYEGBVJVLUKSYFXMGBYFXMXMYFXJXLHBVJVLUKV
    
FSAUVDYBOAUVDXHUUJFQZXFUUNFQZPZJBRZHBRZGBRZYBAUVDXIEUUJCQZFQZYPUUNCQZPZJBRZ
    
HBRZGBRZVWDAUVAHBRZGBRZIBRZVWKTUVDVWKTAVWMVWKIEBUVNAXOEPZVWMVWKVSZVWOVWPTAV
    
WOVWLVWJGBVWOUVAVWIHBVWOUUPVWHJBVWOUULVWFUUOVWGVWOUUKVWEXIFVWOXOEUUJCVWOUGZ
    
UMUQVWOUUMYPUUNCVWOXOEXFFVWQUQUMUNUOUOUOVGVKWFUVDVWNVWKUVDVWNUVDVWLIBRZGBRV
    
WNUVCVWRGBUVAHIBBUHUIVWLGIBBUHUJUKWHSUVDAVWKVWDTZAVWSTUVDAVWJVWCTZGBRZVWSAV
    
WIVWBTZHBRZGBRZVXAAVWHVWATZJBRZHBRZGBRZVXDAXIXHPZVWEUUJPZUDZVWGVVTPZUDZJBRZ
    
HBRZGBRZVXHAVXKJBRZHBRZGBRZVXLJBRZHBRZGBRZUDZVXPAVXSVYBAVXIJBRZHBRZGBRZVXJJ
    
BRZHBRZGBRZUDZVXSAVYFVYIAVXIHBRZGBRZJBRZVYFAVYLJBUUJBURZAVYLAVYLTVYNAYHVYLY
    
KYDVYKGBXJVXIHBXJVXIXHXIVTUKVFVFSVGVHVIVYMVYFVYMVYKJBRZGBRVYFVYKJGBBUHVYOVY
    
EGBVXIJHBBUHUIUJUKSAVYHGBUXLAVYHAVYHTUXLAVYGHBUXGAVYGAVYGTUXGAUXEVYGAUXKUXE
    
MAUXJUWHGBUXJAUWHUXIUWHAUWHTZUWHVYPTUXIAUWHUWHAUWHWIVHVGVKVHVOVCUXEVYGUWHVX
    
JGJBGJVDZYLVWEXFUUJXFUUJECUPVYQUGUNVBUKSVGVHVIVGVHVIVEVYJVXSVYJVYEVYHUDZGBR
    
ZVXSVYSVYJVYEVYHGBVJVLVYSVYDVYGUDZHBRZGBRVXSVYRWUAGBWUAVYRVYDVYGHBVJVLUIWUA
    
VXRGBVYTVXQHBVXQVYTVXIVXJJBVJVLUIUIUJUJUKSAXFUUNCQZVVTPZJBRZHBRZGBRZVYBAWUE
    
GBAUXLWUEAUXLUDZWUDHBWUGUXGWUDWUGUXGUDZWUCJBWUGUXGVYNWUCTZAUXLUXGWUITZAYHUX
    
LWUJTYKAUXLYHWUJAUXLUXGYHWUIAUXLUXGVYNYHWUCAUXLUXGVYNYHWUCTZTZTWUGUXGWULWUH
    
VYNWUKWUHVYNUDZVUNVUMFQZVUNVUMCQZPZUABRUBBRZWUCTWUKWUMWUCXFVUMCQZXFVUMFQZPZ
    
WUPUBUAXFUUNBBBVVNWUPWUOWUNPZWUTWUPWVAVSVVNWUNWUOVTVGVVNWUOWURWUNWUSVUNXFVU
    
MCULVUNXFVUMFULUNWGVUMUUNPZWURWUBWUSVVTWVBVUMUUNXFCWVBUGZUQWVBVUMUUNXFFWVCU
    
QUNAUXLUXGVYNWJWUMVVNUDBUTWUHVYNUUNBURZWUGUXGVYNWVDTZAUXLUXGWVETZAWVDJBRZHB
    
RZUXLWVFTZAXHBURZHBRGBRZWVHKWVKWVHWVKVUMUUJFQZBURZJBRZUABRWVHWVJWVMVUMXGFQZ
    
BURGHUAJBBVVDXHWVOBBXFVUMXGFULVVDBUTWKHJVDZWVOWVLBBXGUUJVUMFUPWVPBUTWKWLWVN
    
WVGUAHBVVJWVMWVDJBVVJWVLUUNBBVUMXGUUJFULVVJBUTWKUOVBUJUKSAWVHWVFWVIWVHWVFTA
    
WVHUXGWVGTWVFWVGHBWMWVGWVEUXGWVDJBWMWNSVGAWVFUXLWVFAWVFUXLWOWPWQVCVKVKVKVAY
    
HWUQWUCYHWUQXJWUPVUNXGFQZVUNXGCQZPGHUBUABBGUBVDXHWVQXIWVRXFVUNXGFULXFVUNXGC
    
ULUNHUAVDWVQWUNWVRWUOXGVUMVUNFUPXGVUMVUNCUPUNWLUKWHSWTWTWTWRWSXAVCVKVKVIWTV
    
IWTVIAWUEVYATZGBRZWUFVYBTAXFYPPZGBRZWVTAVUAWWBLAUYQGBRZUYSGBRZUDZWWBTVUAWWB
    
TAWWCWWDWWBWWDWWCAWWBWWCAWWBTTWWDAWWCWWBAUYQWWAGBAXFUYPPZWWATUYQWWATAWWFWWA
    
AUYPYPXFVUFXBVPUYQWWFWWAUYQWWFUYPXFVTUKWHSVOVHVGVQVNVUAWWEWWBVUAWWEUYQUYSGB
    
VJUKWHSVCWWAWVSGBWWAWUDVXTHBWWAWUCVXLJBWWAWUCVXLWWAWUBVWGVVTWWAXFYPUUNCWWAU
    
GUMVMVPVOVOVFSWUEVYAGBWBSVCVEVYCVXPVYCVXRVYAUDZGBRZVXPWWHVYCVXRVYAGBVJVLWWH
    
VXQVXTUDZHBRZGBRVXPWWGWWJGBWWJWWGVXQVXTHBVJVLUIWWJVXOGBWWIVXNHBVXNWWIVXKVXL
    
JBVJVLUIUIUJUJUKSVXOVXGGBVXNVXFHBVXMVXEJBVXMVWHVWAVXMVWFVVSVWGVVTVXMXIXHVWE
    
UUJFVXIVXJVXLWCVXIVXJVXLWDWEVXKVXLUSUNVPVFVFVFSVXGVXCGBVXFVXBHBVWHVWAJBWBVF
    
VFSVXCVWTGBVWIVWBHBWBVFSVWJVWCGBWBSVGVHXCUVDVWDYBTZTAWWKUVDVWDYBVWCYAGBVWBX
    
THBVWAXSJIBJIVDZVVSXPVVTXRWWLUUJXOXHFWWLUGZUQWWLUUNXQXFFWWLUUJXOXGFWWMUQUQU
    NVBUIUIUKVGVGXCVCXD $.
$}

Il giorno martedì 3 dicembre 2024 alle 05:27:20 UTC+1 savask ha scritto:

> > Saveliy, could you please comment on that (is it legal to add a 
> disjoint for a and b and what was your intention)?
>
>
> Yes, it is legal to add or remove disjoints if you need it for the proof. 
> I don't have a very good intuition behind disjoint conditions, so it seems 
> I missed some in the statements.
>
>
> > I used mm-lamp, and it has some automation to prove such steps (no need 
> to write any code, it is available out of the box). ... Will it not break 
> any rules of this initiative, if I show how to prove abaeqb?
>
>
> Sure, please share the video, it would be very interesting to take a look 
> at mm-lamp automation.
>

-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion visit 
https://groups.google.com/d/msgid/metamath/399f3f91-e2d9-4ca5-ab5f-30df2e627be7n%40googlegroups.com.

Reply via email to