This implementation takes advantage of research made by Niels Möller to
optimize GCM on PowerPC, this optimization yields a +27.7% performance
boost on POWER8 over the previous implementation that was based on intel
documents. The performance comparison is made by processing 4 blocks per
loop without any further optimizations.
I made some documentations between the lines but I suggest writing a
document similar to the intel ones that go into more details and clarify
the preference of this method. I'm also curious if this method can also
make a difference in other architectures like ARM, I'm planning to try it
out for ARM to figure that out.
---
 configure.ac              |   6 +-
 gcm.c                     |  49 +++--
 powerpc64/p8/gcm-hash.asm | 502
++++++++++++++++++++++++++++++++++++++++++++++
 3 files changed, 542 insertions(+), 15 deletions(-)
 create mode 100644 powerpc64/p8/gcm-hash.asm

diff --git a/configure.ac b/configure.ac
index 2a47f940..20f7cf74 100644
--- a/configure.ac
+++ b/configure.ac
@@ -497,7 +497,7 @@ asm_replace_list="aes-encrypt-internal.asm
aes-decrypt-internal.asm \
  sha3-permute.asm umac-nh.asm umac-nh-n.asm machine.m4"

 # Assembler files which generate additional object files if they are used.
-asm_nettle_optional_list="gcm-hash8.asm cpuid.asm \
+asm_nettle_optional_list="gcm-hash.asm gcm-hash8.asm cpuid.asm \
   aes-encrypt-internal-2.asm aes-decrypt-internal-2.asm memxor-2.asm \
   chacha-3core.asm chacha-core-internal-2.asm salsa20-2core.asm \
   salsa20-core-internal-2.asm sha1-compress-2.asm sha256-compress-2.asm \
@@ -621,9 +621,9 @@ AH_VERBATIM([HAVE_NATIVE],
 #undef HAVE_NATIVE_ecc_secp384r1_redc
 #undef HAVE_NATIVE_ecc_secp521r1_modp
 #undef HAVE_NATIVE_ecc_secp521r1_redc
-#undef HAVE_NATIVE_gcm_init_key8
+#undef HAVE_NATIVE_gcm_init_key
+#undef HAVE_NATIVE_gcm_hash
 #undef HAVE_NATIVE_gcm_hash8
-#undef HAVE_NATIVE_gcm_fill
 #undef HAVE_NATIVE_salsa20_core
 #undef HAVE_NATIVE_salsa20_2core
 #undef HAVE_NATIVE_fat_salsa20_2core
diff --git a/gcm.c b/gcm.c
index 48b3e75a..81981c1c 100644
--- a/gcm.c
+++ b/gcm.c
@@ -140,6 +140,19 @@ gcm_gf_mul (union nettle_block16 *x, const union
nettle_block16 *table)
   memcpy (x->b, Z.b, sizeof(Z));
 }
 # elif GCM_TABLE_BITS == 8
+#  if HAVE_NATIVE_gcm_init_key
+
+#define gcm_init_key _nettle_gcm_init_key
+void
+_nettle_gcm_init_key (union nettle_block16 *table);
+#  endif /* HAVE_NATIVE_gcm_init_key */
+#  if HAVE_NATIVE_gcm_hash
+
+#define gcm_hash _nettle_gcm_hash
+void
+_nettle_gcm_hash (const struct gcm_key *key, union nettle_block16 *x,
+   size_t length, const uint8_t *data);
+#  endif /* HAVE_NATIVE_gcm_hash */
 #  if HAVE_NATIVE_gcm_hash8

 #define gcm_hash _nettle_gcm_hash8
@@ -228,6 +241,29 @@ gcm_gf_mul (union nettle_block16 *x, const union
nettle_block16 *table)
 /* Increment the rightmost 32 bits. */
 #define INC32(block) INCREMENT(4, (block.b) + GCM_BLOCK_SIZE - 4)

+#ifndef gcm_init_key
+static void
+gcm_init_key(union nettle_block16 *table)
+{
+#if GCM_TABLE_BITS
+  /* Middle element if GCM_TABLE_BITS > 0, otherwise the first
+     element */
+  unsigned i = (1<<GCM_TABLE_BITS)/2;
+
+  /* Algorithm 3 from the gcm paper. First do powers of two, then do
+     the rest by adding. */
+  while (i /= 2)
+    block16_mulx_ghash(&table[i], &table[2*i]);
+  for (i = 2; i < 1<<GCM_TABLE_BITS; i *= 2)
+    {
+      unsigned j;
+      for (j = 1; j < i; j++)
+ block16_xor3(&table[i+j], &table[i], &table[j]);
+    }
+#endif
+}
+#endif /* !gcm_init_key */
+
 /* Initialization of GCM.
  * @ctx: The context of GCM
  * @cipher: The context of the underlying block cipher
@@ -245,18 +281,7 @@ gcm_set_key(struct gcm_key *key,
   memset(key->h[0].b, 0, GCM_BLOCK_SIZE);
   f (cipher, GCM_BLOCK_SIZE, key->h[i].b, key->h[0].b);

-#if GCM_TABLE_BITS
-  /* Algorithm 3 from the gcm paper. First do powers of two, then do
-     the rest by adding. */
-  while (i /= 2)
-    block16_mulx_ghash(&key->h[i], &key->h[2*i]);
-  for (i = 2; i < 1<<GCM_TABLE_BITS; i *= 2)
-    {
-      unsigned j;
-      for (j = 1; j < i; j++)
- block16_xor3(&key->h[i+j], &key->h[i],&key->h[j]);
-    }
-#endif
+  gcm_init_key(key->h);
 }

 #ifndef gcm_hash
diff --git a/powerpc64/p8/gcm-hash.asm b/powerpc64/p8/gcm-hash.asm
new file mode 100644
index 00000000..e79fbdc2
--- /dev/null
+++ b/powerpc64/p8/gcm-hash.asm
@@ -0,0 +1,502 @@
+C powerpc64/p8/gcm-hash.asm
+
+ifelse(`
+   Copyright (C) 2020 Niels Möller and Mamone Tarsha
+   This file is part of GNU Nettle.
+
+   GNU Nettle is free software: you can redistribute it and/or
+   modify it under the terms of either:
+
+     * the GNU Lesser General Public License as published by the Free
+       Software Foundation; either version 3 of the License, or (at your
+       option) any later version.
+
+   or
+
+     * the GNU General Public License as published by the Free
+       Software Foundation; either version 2 of the License, or (at your
+       option) any later version.
+
+   or both in parallel, as here.
+
+   GNU Nettle is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   General Public License for more details.
+
+   You should have received copies of the GNU General Public License and
+   the GNU Lesser General Public License along with this program.  If
+   not, see http://www.gnu.org/licenses/.
+')
+
+C Alignment of gcm_key table elements, which is declared in gcm.h
+define(`TableElemAlign', `0x100')
+
+C Register usage:
+
+define(`SP', `r1')
+define(`TOCP', `r2')
+
+define(`TABLE', `r3')
+
+define(`ZERO', `v0')
+define(`B1', `v1')
+define(`EMSB', `v16')
+define(`POLY', `v17')
+define(`POLY_L', `v1')
+
+define(`H', `v2')
+define(`H2', `v3')
+define(`H3', `v4')
+define(`H4', `v5')
+define(`H1M', `v6')
+define(`H1L', `v7')
+define(`H2M', `v8')
+define(`H2L', `v9')
+define(`Hl', `v10')
+define(`Hm', `v11')
+define(`Hp', `v12')
+define(`Hl2', `v13')
+define(`Hm2', `v14')
+define(`Hp2', `v15')
+define(`R', `v13')
+define(`F', `v14')
+define(`T', `v15')
+define(`R2', `v16')
+define(`F2', `v17')
+define(`T2', `v18')
+
+define(`LE_TEMP', `v18')
+define(`LE_MASK', `v19')
+
+.file "gcm-hash.asm"
+
+.text
+
+    C void gcm_init_key (union gcm_block *table)
+
+C This function populates the gcm table as the following layout
+C
*******************************************************************************
+C | H1M = (H1 div x⁶⁴)||((H1 mod x⁶⁴) × (x⁶⁴+x⁶³+x⁶²+x⁵⁷)) div x⁶⁴
     |
+C | H1L = (H1 mod x⁶⁴)||(((H1 mod x⁶⁴) × (x⁶³+x⁶²+x⁵⁷)) mod x⁶⁴) + (H1 div
x⁶⁴) |
+C |
      |
+C | H2M = (H2 div x⁶⁴)||((H2 mod x⁶⁴) × (x⁶⁴+x⁶³+x⁶²+x⁵⁷)) div x⁶⁴
     |
+C | H2L = (H2 mod x⁶⁴)||(((H2 mod x⁶⁴) × (x⁶³+x⁶²+x⁵⁷)) mod x⁶⁴) + (H2 div
x⁶⁴) |
+C |
      |
+C | H3M = (H3 div x⁶⁴)||((H3 mod x⁶⁴) × (x⁶⁴+x⁶³+x⁶²+x⁵⁷)) div x⁶⁴
     |
+C | H3L = (H3 mod x⁶⁴)||(((H3 mod x⁶⁴) × (x⁶³+x⁶²+x⁵⁷)) mod x⁶⁴) + (H3 div
x⁶⁴) |
+C |
      |
+C | H4M = (H3 div x⁶⁴)||((H4 mod x⁶⁴) × (x⁶⁴+x⁶³+x⁶²+x⁵⁷)) div x⁶⁴
     |
+C | H4L = (H3 mod x⁶⁴)||(((H4 mod x⁶⁴) × (x⁶³+x⁶²+x⁵⁷)) mod x⁶⁴) + (H4 div
x⁶⁴) |
+C
*******************************************************************************
+
+define(`FUNC_ALIGN', `5')
+PROLOGUE(_nettle_gcm_init_key)
+    DATA_LOAD_VEC(POLY,.polynomial,r7)           C
0xC2000000000000000000000000000001
+IF_LE(`
+    li             r8,0
+    lvsl           LE_MASK,0,r8                  C
0x000102030405060708090A0B0C0D0E0F
+    vspltisb       LE_TEMP,0x07                  C
0x07070707070707070707070707070707
+    vxor           LE_MASK,LE_MASK,LE_TEMP       C
0x07060504030201000F0E0D0C0B0A0908
+')
+
+    C 'H' is assigned by gcm_set_key() to the middle element of the table
+    li             r10,8*TableElemAlign
+    lxvd2x         VSR(H),r10,TABLE              C load 'H'
+    C byte-reverse of each doubleword permuting on little-endian mode
+IF_LE(`
+    vperm          H,H,H,LE_MASK
+')
+
+    C --- calculate H = H << 1 mod P(X), P(X) = (x¹²⁸+x¹²⁷+x¹²⁶+x¹²¹+1) ---
+
+    vupkhsb        EMSB,H                        C extend most significant
bit to first byte
+    vspltisb       B1,1                          C
0x01010101010101010101010101010101
+    vspltb         EMSB,EMSB,0                   C first byte
quadword-extend
+    vsl            H,H,B1                        C H = H << 1
+    vand           EMSB,EMSB,POLY                C EMSB &=
0xC2000000000000000000000000000001
+    vxor           ZERO,ZERO,ZERO                C
0x00000000000000000000000000000000
+    vxor           H,H,EMSB                      C H ^= EMSB
+
+    C --- calculate H^2 = H*H ---
+
+    xxmrghd        VSR(POLY_L),VSR(ZERO),VSR(POLY) C
0x0000000000000000C200000000000000
+
+    C --- Hp = (H mod x⁶⁴) / x⁶⁴ mod P(X) ---
+    C --- Hp = (H mod x⁶⁴) × (x⁶⁴+x⁶³+x⁶²+x⁵⁷) mod P(X), deg(Hp) ≤ 127 ---
+    C --- Hp = (H mod x⁶⁴) × (x⁶⁴+x⁶³+x⁶²+x⁵⁷) ---
+    vpmsumd        Hp,H,POLY_L                   C Hp = (H mod x⁶⁴) ×
(x⁶³+x⁶²+x⁵⁷)
+    xxmrgld        VSR(Hl),VSR(H),VSR(ZERO)      C Hl = (H mod x⁶⁴) × x⁶⁴
+    xxswapd        VSR(Hm),VSR(H)
+    vxor           Hl,Hl,Hp                      C Hl = Hl + Hp
+    vxor           Hm,Hm,Hp                      C Hm = Hm + Hp
+    xxmrghd        VSR(H1M),VSR(H),VSR(Hl)       C H1M = (H div x⁶⁴)||(Hl
div x⁶⁴)
+    xxmrgld        VSR(H1L),VSR(H),VSR(Hm)       C H1L = (H mod x⁶⁴)||(Hl
mod x⁶⁴)
+
+    vpmsumd        F,H1L,H                       C F = (H1Lh × Hh) + (H1Ll
× Hl)
+    vpmsumd        R,H1M,H                       C R = (H1Mh × Hh) + (H1Ml
× Hl)
+
+    C --- rduction ---
+    vpmsumd        T,F,POLY_L                    C T = (F mod x⁶⁴) ×
(x⁶³+x⁶²+x⁵⁷)
+    xxswapd        VSR(H2),VSR(F)
+    vxor           R,R,T                         C R = R + T
+    vxor           H2,R,H2
+
+    xxmrgld        VSR(Hl),VSR(H2),VSR(ZERO)
+    xxswapd        VSR(Hm),VSR(H2)
+    vpmsumd        Hp,H2,POLY_L
+    vxor           Hl,Hl,Hp
+    vxor           Hm,Hm,Hp
+    xxmrghd        VSR(H2M),VSR(H2),VSR(Hl)
+    xxmrgld        VSR(H2L),VSR(H2),VSR(Hm)
+
+    C store H1M, H1L, H2M, H2L
+    li             r8,1*TableElemAlign
+    li             r9,2*TableElemAlign
+    li             r10,3*TableElemAlign
+    stxvd2x        VSR(H1M),0,TABLE
+    stxvd2x        VSR(H1L),r8,TABLE
+    stxvd2x        VSR(H2M),r9,TABLE
+    stxvd2x        VSR(H2L),r10,TABLE
+
+    C --- calculate H^3 = H^1*H^2, H^4 = H^2*H^2 ---
+
+    vpmsumd        F,H1L,H2
+    vpmsumd        F2,H2L,H2
+    vpmsumd        R,H1M,H2
+    vpmsumd        R2,H2M,H2
+
+    vpmsumd        T,F,POLY_L
+    vpmsumd        T2,F2,POLY_L
+    xxswapd        VSR(H3),VSR(F)
+    xxswapd        VSR(H4),VSR(F2)
+    vxor           R,R,T
+    vxor           R2,R2,T2
+    vxor           H3,R,H3
+    vxor           H4,R2,H4
+
+    xxmrgld        VSR(Hl),VSR(H3),VSR(ZERO)
+    xxmrgld        VSR(Hl2),VSR(H4),VSR(ZERO)
+    xxswapd        VSR(Hm),VSR(H3)
+    xxswapd        VSR(Hm2),VSR(H4)
+    vpmsumd        Hp,H3,POLY_L
+    vpmsumd        Hp2,H4,POLY_L
+    vxor           Hl,Hl,Hp
+    vxor           Hl2,Hl2,Hp2
+    vxor           Hm,Hm,Hp
+    vxor           Hm2,Hm2,Hp2
+    xxmrghd        VSR(H1M),VSR(H3),VSR(Hl)
+    xxmrghd        VSR(H2M),VSR(H4),VSR(Hl2)
+    xxmrgld        VSR(H1L),VSR(H3),VSR(Hm)
+    xxmrgld        VSR(H2L),VSR(H4),VSR(Hm2)
+
+    C store H3M, H3L, H4M, H4L
+    li             r7,4*TableElemAlign
+    li             r8,5*TableElemAlign
+    li             r9,6*TableElemAlign
+    li             r10,7*TableElemAlign
+    stxvd2x        VSR(H1M),r7,TABLE
+    stxvd2x        VSR(H1L),r8,TABLE
+    stxvd2x        VSR(H2M),r9,TABLE
+    stxvd2x        VSR(H2L),r10,TABLE
+
+    blr
+EPILOGUE(_nettle_gcm_init_key)
+
+define(`TABLE', `r3')
+define(`X', `r4')
+define(`LENGTH', `r5')
+define(`DATA', `r6')
+
+define(`ZERO', `v16')
+define(`POLY', `v17')
+define(`POLY_L', `v0')
+
+define(`D', `v1')
+define(`C0', `v2')
+define(`C1', `v3')
+define(`C2', `v4')
+define(`C3', `v5')
+define(`H1M', `v6')
+define(`H1L', `v7')
+define(`H2M', `v8')
+define(`H2L', `v9')
+define(`H3M', `v10')
+define(`H3L', `v11')
+define(`H4M', `v12')
+define(`H4L', `v13')
+define(`R', `v14')
+define(`F', `v15')
+define(`R2', `v16')
+define(`F2', `v17')
+define(`R3', `v18')
+define(`F3', `v20')
+define(`R4', `v21')
+define(`F4', `v22')
+define(`T', `v23')
+
+define(`LE_TEMP', `v18')
+define(`LE_MASK', `v19')
+
+    C void gcm_hash (const struct gcm_key *key, union gcm_block *x,
+    C                size_t length, const uint8_t *data)
+
+define(`FUNC_ALIGN', `5')
+PROLOGUE(_nettle_gcm_hash)
+    DATA_LOAD_VEC(POLY,.polynomial,r7)
+IF_LE(`
+    li             r8,0
+    lvsl           LE_MASK,0,r8
+    vspltisb       LE_TEMP,0x07
+    vxor           LE_MASK,LE_MASK,LE_TEMP
+')
+    vxor           ZERO,ZERO,ZERO
+    xxmrghd        VSR(POLY_L),VSR(ZERO),VSR(POLY)
+
+    lxvd2x         VSR(D),0,X                    C load 'X' pointer
+    C byte-reverse of each doubleword permuting on little-endian mode
+IF_LE(`
+    vperm          D,D,D,LE_MASK
+')
+
+    C --- process 4 blocks '128-bit each' per one loop ---
+
+    srdi           r7,LENGTH,6                   C 4-blocks loop count
'LENGTH / (4 * 16)'
+    cmpldi         r7,0
+    beq            L2x
+
+    mtctr          r7                            C assign counter register
to loop count
+
+    C store non-volatile vector registers
+    addi           r8,SP,-64
+    stvx           20,0,r8
+    addi           r8,r8,16
+    stvx           21,0,r8
+    addi           r8,r8,16
+    stvx           22,0,r8
+    addi           r8,r8,16
+    stvx           23,0,r8
+
+    C load table elements
+    li             r8,1*TableElemAlign
+    li             r9,2*TableElemAlign
+    li             r10,3*TableElemAlign
+    lxvd2x         VSR(H1M),0,TABLE
+    lxvd2x         VSR(H1L),r8,TABLE
+    lxvd2x         VSR(H2M),r9,TABLE
+    lxvd2x         VSR(H2L),r10,TABLE
+    li             r7,4*TableElemAlign
+    li             r8,5*TableElemAlign
+    li             r9,6*TableElemAlign
+    li             r10,7*TableElemAlign
+    lxvd2x         VSR(H3M),r7,TABLE
+    lxvd2x         VSR(H3L),r8,TABLE
+    lxvd2x         VSR(H4M),r9,TABLE
+    lxvd2x         VSR(H4L),r10,TABLE
+
+    li             r8,0x10
+    li             r9,0x20
+    li             r10,0x30
+.align 5
+L4x_loop:
+    C input loading
+    lxvd2x         VSR(C0),0,DATA                C load C0
+    lxvd2x         VSR(C1),r8,DATA               C load C1
+    lxvd2x         VSR(C2),r9,DATA               C load C2
+    lxvd2x         VSR(C3),r10,DATA              C load C3
+
+IF_LE(`
+    vperm          C0,C0,C0,LE_MASK
+    vperm          C1,C1,C1,LE_MASK
+    vperm          C2,C2,C2,LE_MASK
+    vperm          C3,C3,C3,LE_MASK
+')
+
+    C previous digest combining
+    vxor           C0,C0,D
+
+    C polynomial multiplication
+    vpmsumd        F2,H3L,C1
+    vpmsumd        R2,H3M,C1
+    vpmsumd        F3,H2L,C2
+    vpmsumd        R3,H2M,C2
+    vpmsumd        F4,H1L,C3
+    vpmsumd        R4,H1M,C3
+    vpmsumd        F,H4L,C0
+    vpmsumd        R,H4M,C0
+
+    C deferred recombination of partial products
+    vxor           F3,F3,F4
+    vxor           R3,R3,R4
+    vxor           F,F,F2
+    vxor           R,R,R2
+    vxor           F,F,F3
+    vxor           R,R,R3
+
+    C reduction
+    vpmsumd        T,F,POLY_L
+    xxswapd        VSR(D),VSR(F)
+    vxor           R,R,T
+    vxor           D,R,D
+
+    addi           DATA,DATA,0x40
+    bdnz           L4x_loop
+
+    C restore non-volatile vector registers
+    addi           r8,SP,-64
+    lvx            20,0,r8
+    addi           r8,r8,16
+    lvx            21,0,r8
+    addi           r8,r8,16
+    lvx            22,0,r8
+    addi           r8,r8,16
+    lvx            23,0,r8
+
+    clrldi         LENGTH,LENGTH,58              C 'set the high-order 58
bits to zeros'
+L2x:
+    C --- process 2 blocks ---
+
+    srdi           r7,LENGTH,5                   C 'LENGTH / (2 * 16)'
+    cmpldi         r7,0
+    beq            L1x
+
+    C load table elements
+    li             r8,1*TableElemAlign
+    li             r9,2*TableElemAlign
+    li             r10,3*TableElemAlign
+    lxvd2x         VSR(H1M),0,TABLE
+    lxvd2x         VSR(H1L),r8,TABLE
+    lxvd2x         VSR(H2M),r9,TABLE
+    lxvd2x         VSR(H2L),r10,TABLE
+
+    C input loading
+    li             r10,0x10
+    lxvd2x         VSR(C0),0,DATA                C load C0
+    lxvd2x         VSR(C1),r10,DATA              C load C1
+
+IF_LE(`
+    vperm          C0,C0,C0,LE_MASK
+    vperm          C1,C1,C1,LE_MASK
+')
+
+    C previous digest combining
+    vxor           C0,C0,D
+
+    C polynomial multiplication
+    vpmsumd        F2,H1L,C1
+    vpmsumd        R2,H1M,C1
+    vpmsumd        F,H2L,C0
+    vpmsumd        R,H2M,C0
+
+    C deferred recombination of partial products
+    vxor           F,F,F2
+    vxor           R,R,R2
+
+    C reduction
+    vpmsumd        T,F,POLY_L
+    xxswapd        VSR(D),VSR(F)
+    vxor           R,R,T
+    vxor           D,R,D
+
+    addi           DATA,DATA,0x20
+    clrldi         LENGTH,LENGTH,59              C 'set the high-order 59
bits to zeros'
+L1x:
+    C --- process 1 block ---
+
+    srdi           r7,LENGTH,4                   C 'LENGTH / (1 * 16)'
+    cmpldi         r7,0
+    beq            Lmod
+
+    C load table elements
+    li             r8,1*TableElemAlign
+    lxvd2x         VSR(H1M),0,TABLE
+    lxvd2x         VSR(H1L),r8,TABLE
+
+    C input loading
+    lxvd2x         VSR(C0),0,DATA                C load C0
+
+IF_LE(`
+    vperm          C0,C0,C0,LE_MASK
+')
+
+    C previous digest combining
+    vxor           C0,C0,D
+
+    C polynomial multiplication
+    vpmsumd        F,H1L,C0
+    vpmsumd        R,H1M,C0
+
+    C reduction
+    vpmsumd        T,F,POLY_L
+    xxswapd        VSR(D),VSR(F)
+    vxor           R,R,T
+    vxor           D,R,D
+
+    addi           DATA,DATA,0x10
+    clrldi         LENGTH,LENGTH,60              C 'set the high-order 60
bits to zeros'
+Lmod:
+    C --- process the modulo bytes, padding the low-order bytes with zeros
---
+
+    cmpldi         LENGTH,0
+    beq            Ldone
+
+    C load table elements
+    li             r8,1*TableElemAlign
+    lxvd2x         VSR(H1M),0,TABLE
+    lxvd2x         VSR(H1L),r8,TABLE
+
+    C push every modulo byte to the stack and load them with padding into
vector register
+    vxor           ZERO,ZERO,ZERO
+    addi           r8,SP,-16
+    stvx           ZERO,0,r8
+Lstb_loop:
+    subic.         LENGTH,LENGTH,1
+    lbzx           r7,LENGTH,DATA
+    stbx           r7,LENGTH,r8
+    bne            Lstb_loop
+    lxvd2x         VSR(C0),0,r8
+
+IF_LE(`
+    vperm          C0,C0,C0,LE_MASK
+')
+
+    C previous digest combining
+    vxor           C0,C0,D
+
+    C polynomial multiplication
+    vpmsumd        F,H1L,C0
+    vpmsumd        R,H1M,C0
+
+    C reduction
+    vpmsumd        T,F,POLY_L
+    xxswapd        VSR(D),VSR(F)
+    vxor           R,R,T
+    vxor           D,R,D
+
+Ldone:
+    C byte-reverse of each doubleword permuting on little-endian mode
+IF_LE(`
+    vperm          D,D,D,LE_MASK
+')
+    stxvd2x        VSR(D),0,X                    C store digest 'D'
+
+    blr
+EPILOGUE(_nettle_gcm_hash)
+
+.data
+    C 0xC2000000000000000000000000000001
+.polynomial:
+.align 4
+IF_BE(`
+.byte 0xC2
+.rept 14
+.byte 0x00
+.endr
+.byte 0x01
+',`
+.byte 0x01
+.rept 14
+.byte 0x00
+.endr
+.byte 0xC2
+')

-- 
2.17.1
_______________________________________________
nettle-bugs mailing list
nettle-bugs@lists.lysator.liu.se
http://lists.lysator.liu.se/mailman/listinfo/nettle-bugs

Reply via email to