Dear Hanna, You could perhaps try $SUBROUTINES ADVAN13 TOL=9 to check if this is related to the accuracy of the solutions of the differential equations. ADVAN13 runs faster than ADVAN6 and/or allows a higher tolerance setting.
Best regards, Erik ________________________________ From: owner-nmus...@globomaxnm.com [owner-nmus...@globomaxnm.com] on behalf of Silber Baumann, Hanna [hanna.silber_baum...@roche.com] Sent: Monday, December 12, 2016 10:13 AM To: nmusers@globomaxnm.com Subject: [NMusers] Different results with ADVAN4 and ADVAN6 Dear nmusers, I have a data set which contains single and multiple ascending dose data. The model development was initially performed on the single dose data. I initially developed a model using ADVAN4 TRANS 2 (2 compartment linear model with oral administration) which I later reparameterized into ADVAN6. I expected to see some minor differences in parameter estimates, OFV etc due to the change in subroutine but was surprised to see large differences in both parameter estimates and OFV (+180 points) but also a significant improvement in overall fit (graphically) while the data was the same. With the ADVAN4 the model fit was particularly poor to parts of the multiple dose data, with the ADVAN6 the overall fit to all data was much improved. I was using NONMEM7.3 for the analysis. I guess the ADVAN4 model gets stuck in a local minima, but using the final estimates from the ADVAN6 model does not help. I would be grateful for an explanation of the reasons why this happens. I have included the two models below. Kind regards, Hanna Silber $PROBLEM PK with ADVAN4 $INPUT C ID TAD TIME AMT DV EVID CMT PTIM LDV DOSE BW BMI CLCR SEX AGE STUDY DAY BLQ $DATA nmpk05DEC16.csv IGNORE=@ $SUBROUTINES ADVAN4 TRANS4 $PK CL = THETA(1) * EXP(ETA(1)) V2 = THETA(2) * EXP(ETA(2)) KA = THETA(3) * EXP(ETA(3)) ALAG1 = THETA(6) * EXP(ETA(4)) Q = THETA(7) * EXP(ETA(5)) V3 = THETA(8) * EXP(ETA(6)) S2 = V2/1000 $ERROR IPRED = F W = SQRT(THETA(4)**2*IPRED**2 + THETA(5)**2) Y = IPRED + W*EPS(1) IRES = DV-IPRED IWRES = IRES/W $THETA (0,12.7) ;1 CL (0,275) ;2 V2 (0,3.06) ;3 KA (0, 0.12) ;4 Prop.RE (sd) (0, 0.0153) ;5 Add.RE (sd) (0,0.474) ;6 ALAG1 (0,26.3) ;7 Q (0,133) ;8 V3 $OMEGA BLOCK(2) 0.0747 ;1 IIV CL 0.0723 0.0942 ;2 IIV V2 $OMEGA 1.76 ;3 IIV KA 0.00166 ;4 IIV ALAG 0.036 ;5 IIV Q 0.0407 ;6 IIV V3 $SIGMA 1 FIX ; $EST METHOD=1 INTER MAXEVAL=9999 NOABORT SIG=3 PRINT=1 POSTHOC $COV ###################################################### $PROBLEM PK with ADVAN6 $INPUT C ID TAD TIME AMT DV EVID CMT PTIM LDV DOSE BW BMI CLCR SEX AGE STUDY DAY BLQ $DATA nmpk05DEC16.csv IGNORE=@ $SUBROUTINES ADVAN6 TOL=5 $MODEL COMP = (ABS) ;1 COMP = (CENT) ;2 COMP = (PER) ;3 $PK CL = THETA(1) * EXP(ETA(1)) V2 = THETA(2) * EXP(ETA(2)) KA = THETA(3) * EXP(ETA(3)) ALAG1 = THETA(6) * EXP(ETA(4)) Q = THETA(7) * EXP(ETA(5)) V3 = THETA(8) * EXP(ETA(6)) K=CL/V2 K23 = Q/V2 K32 = Q/V3 A_0(1) = 0 A_0(2) = 0 A_0(3) = 0 $DES DADT(1) = -KA*A(1) DADT(2) = KA*A(1) - K*A(2) - K23*A(2) + K32*A(3) DADT(3) = K23*A(2) - K23*A(3) $ERROR CONC = A(2)*1000/V2 IPRED = CONC IF(CONC.EQ.0) IPRED = 1 W = SQRT(THETA(4)**2*IPRED**2 + THETA(5)**2) Y = IPRED + W*EPS(1) IRES = DV-IPRED IWRES = IRES/W $THETA (0,12.1) ;1 CL (0,275) ;2 V2 (0,3.06) ;3 KA (0, 0.12) ;4 Prop.RE (sd) (0, 0.0153) ;5 Add.RE (sd) (0,0.474) ;6 ALAG1 (0,26.3) ;7 Q (0,133) ;8 V3 $OMEGA BLOCK(2) 0.0747 ;1 IIV CL 0.0723 0.0942 ;2 IIV V2 $OMEGA 1.76 ;3 IIV KA 0.00166 ;4 IIV ALAG 0.036 ;5 IIV Q 0.0407 ;6 IIV V3 $SIGMA 1 FIX ; $EST METHOD=1 INTER MAXEVAL=9999 NOABORT SIG=3 PRINT=1 POSTHOC $COV ############################### Data set example: C ID TAD TIME AMT DV EVID CMT PTIM LDV DOSE BW BMI CLCR SEX AGE STUDY DAY BLQ 0 11001 0 0 5 0 1 1 0 0 5 54.8 20.63 74.32657 0 44 1 1 0 0 11001 0.5 0.5 0 1.94 0 2 0.5 0.662688 5 54.8 20.63 74.32657 0 44 1 1 0 0 11001 1 1 0 14.6 0 2 1 2.681022 5 54.8 20.63 74.32657 0 44 1 1 0 0 11001 1.5 1.5 0 22.4 0 2 1.5 3.109061 5 54.8 20.63 74.32657 0 44 1 1 0 0 11001 2 2 0 18.1 0 2 2 2.895912 5 54.8 20.63 74.32657 0 44 1 1 0 0 11001 2.5 2.5 0 15.4 0 2 2.5 2.734368 5 54.8 20.63 74.32657 0 44 1 1 0 0 11001 3 3 0 16.3 0 2 3 2.791165 5 54.8 20.63 74.32657 0 44 1 1 0 0 11001 4 4 0 15.5 0 2 4 2.74084 5 54.8 20.63 74.32657 0 44 1 1 0 0 11001 6 6 0 11.9 0 2 6 2.476538 5 54.8 20.63 74.32657 0 44 1 1 0 0 11001 8 8 0 11.5 0 2 8 2.442347 5 54.8 20.63 74.32657 0 44 1 1 0 0 11001 12 12 0 7.71 0 2 12 2.042518 5 54.8 20.63 74.32657 0 44 1 1 0 0 11001 16.017 16.017 0 8.71 0 2 16 2.164472 5 54.8 20.63 74.32657 0 44 1 2 0 0 11001 24 24 0 5.55 0 2 24 1.713798 5 54.8 20.63 74.32657 0 44 1 2 0 0 11001 48 48 0 3.5 0 2 48 1.252763 5 54.8 20.63 74.32657 0 44 1 3 0 0 11001 72 72 0 1.86 0 2 72 0.620576 5 54.8 20.63 74.32657 0 44 1 4 0 0 11001 120.883 120.883 0 0.597 0 2 120 -0.51584 5 54.8 20.63 74.32657 0 44 1 6 0 0 11001 144.9 144.9 0 0.356 0 2 144 -1.03282 5 54.8 20.63 74.32657 0 44 1 7 0 0 11001 168.883 168.883 0 0.177 0 2 168 -1.73161 5 54.8 20.63 74.32657 0 44 1 8 0 --