Dear Hanna,

You could perhaps try $SUBROUTINES ADVAN13 TOL=9 to check if this is related to 
the accuracy of the solutions of the differential equations. ADVAN13 runs 
faster than ADVAN6 and/or allows a higher tolerance setting.

Best regards,

Erik

________________________________
From: owner-nmus...@globomaxnm.com [owner-nmus...@globomaxnm.com] on behalf of 
Silber Baumann, Hanna [hanna.silber_baum...@roche.com]
Sent: Monday, December 12, 2016 10:13 AM
To: nmusers@globomaxnm.com
Subject: [NMusers] Different results with ADVAN4 and ADVAN6

Dear nmusers,
I have a data set which contains single and multiple ascending dose data. The 
model development was initially performed on the single dose data.
I initially developed a model using ADVAN4 TRANS 2 (2 compartment linear model 
with oral administration) which I later reparameterized into ADVAN6. I expected 
to see some minor differences in parameter estimates, OFV etc due to the change 
in subroutine but was surprised to see large differences in both parameter 
estimates and OFV (+180 points) but also a significant improvement in overall 
fit (graphically) while the data was the same. With the ADVAN4 the model fit 
was particularly poor to parts of the multiple dose data, with the ADVAN6 the 
overall fit to all data was much improved. I was using NONMEM7.3 for the 
analysis.

I guess the ADVAN4 model gets stuck in a local minima, but using the final 
estimates from the ADVAN6 model does not help. I would be grateful for an 
explanation of the reasons why this happens.

I have included the two models below.
Kind regards,
Hanna Silber

$PROBLEM PK with ADVAN4

$INPUT C ID TAD TIME AMT DV EVID CMT PTIM LDV DOSE BW BMI CLCR SEX AGE
       STUDY DAY BLQ

$DATA nmpk05DEC16.csv IGNORE=@

$SUBROUTINES ADVAN4 TRANS4

$PK
CL = THETA(1) * EXP(ETA(1))
V2  = THETA(2) * EXP(ETA(2))
KA = THETA(3) * EXP(ETA(3))
ALAG1 = THETA(6) * EXP(ETA(4))
Q = THETA(7) * EXP(ETA(5))
V3 = THETA(8) * EXP(ETA(6))

S2 = V2/1000

$ERROR
IPRED = F
    W = SQRT(THETA(4)**2*IPRED**2 + THETA(5)**2)
    Y = IPRED + W*EPS(1)
 IRES = DV-IPRED
IWRES = IRES/W

$THETA
(0,12.7) ;1 CL
(0,275) ;2 V2
(0,3.06) ;3 KA
(0, 0.12) ;4 Prop.RE (sd)
(0, 0.0153)  ;5 Add.RE (sd)
(0,0.474) ;6 ALAG1
(0,26.3) ;7 Q
(0,133) ;8 V3

$OMEGA BLOCK(2) 0.0747 ;1 IIV CL
0.0723 0.0942 ;2 IIV V2
$OMEGA
1.76  ;3 IIV KA
0.00166  ;4 IIV ALAG
0.036  ;5 IIV Q
0.0407  ;6 IIV V3

$SIGMA
1 FIX ;

$EST METHOD=1 INTER MAXEVAL=9999 NOABORT SIG=3 PRINT=1 POSTHOC
$COV
######################################################

$PROBLEM PK with ADVAN6

$INPUT C ID TAD TIME AMT DV EVID CMT PTIM LDV DOSE BW BMI CLCR SEX AGE
       STUDY DAY BLQ

$DATA nmpk05DEC16.csv IGNORE=@

$SUBROUTINES ADVAN6 TOL=5

$MODEL
COMP = (ABS) ;1
COMP = (CENT) ;2
COMP = (PER) ;3

$PK
CL = THETA(1) * EXP(ETA(1))
V2  = THETA(2) * EXP(ETA(2))
KA = THETA(3) * EXP(ETA(3))
ALAG1 = THETA(6) * EXP(ETA(4))
Q = THETA(7) * EXP(ETA(5))
V3 = THETA(8) * EXP(ETA(6))

K=CL/V2
K23 = Q/V2
K32 = Q/V3

A_0(1) = 0
A_0(2) = 0
A_0(3) = 0

$DES
DADT(1) = -KA*A(1)
DADT(2) = KA*A(1) - K*A(2) - K23*A(2) + K32*A(3)
DADT(3) = K23*A(2) - K23*A(3)

$ERROR
CONC = A(2)*1000/V2
IPRED = CONC
IF(CONC.EQ.0) IPRED = 1

W = SQRT(THETA(4)**2*IPRED**2 + THETA(5)**2)
Y = IPRED + W*EPS(1)
IRES = DV-IPRED
IWRES = IRES/W

$THETA
(0,12.1) ;1 CL
(0,275) ;2 V2
(0,3.06) ;3 KA
(0, 0.12) ;4 Prop.RE (sd)
(0, 0.0153)  ;5 Add.RE (sd)
(0,0.474) ;6 ALAG1
(0,26.3) ;7 Q
(0,133) ;8 V3

$OMEGA BLOCK(2) 0.0747 ;1 IIV CL
0.0723 0.0942 ;2 IIV V2
$OMEGA
1.76  ;3 IIV KA
0.00166  ;4 IIV ALAG
0.036  ;5 IIV Q
0.0407  ;6 IIV V3

$SIGMA
1 FIX ;

$EST METHOD=1 INTER MAXEVAL=9999 NOABORT SIG=3 PRINT=1 POSTHOC
$COV

###############################
Data set example:
C       ID      TAD     TIME    AMT     DV      EVID    CMT     PTIM    LDV     
DOSE    BW      BMI     CLCR    SEX     AGE     STUDY   DAY     BLQ
0       11001   0       0       5       0       1       1       0       0       
5       54.8    20.63   74.32657        0       44      1       1       0
0       11001   0.5     0.5     0       1.94    0       2       0.5     
0.662688        5       54.8    20.63   74.32657        0       44      1       
1       0
0       11001   1       1       0       14.6    0       2       1       
2.681022        5       54.8    20.63   74.32657        0       44      1       
1       0
0       11001   1.5     1.5     0       22.4    0       2       1.5     
3.109061        5       54.8    20.63   74.32657        0       44      1       
1       0
0       11001   2       2       0       18.1    0       2       2       
2.895912        5       54.8    20.63   74.32657        0       44      1       
1       0
0       11001   2.5     2.5     0       15.4    0       2       2.5     
2.734368        5       54.8    20.63   74.32657        0       44      1       
1       0
0       11001   3       3       0       16.3    0       2       3       
2.791165        5       54.8    20.63   74.32657        0       44      1       
1       0
0       11001   4       4       0       15.5    0       2       4       2.74084 
5       54.8    20.63   74.32657        0       44      1       1       0
0       11001   6       6       0       11.9    0       2       6       
2.476538        5       54.8    20.63   74.32657        0       44      1       
1       0
0       11001   8       8       0       11.5    0       2       8       
2.442347        5       54.8    20.63   74.32657        0       44      1       
1       0
0       11001   12      12      0       7.71    0       2       12      
2.042518        5       54.8    20.63   74.32657        0       44      1       
1       0
0       11001   16.017  16.017  0       8.71    0       2       16      
2.164472        5       54.8    20.63   74.32657        0       44      1       
2       0
0       11001   24      24      0       5.55    0       2       24      
1.713798        5       54.8    20.63   74.32657        0       44      1       
2       0
0       11001   48      48      0       3.5     0       2       48      
1.252763        5       54.8    20.63   74.32657        0       44      1       
3       0
0       11001   72      72      0       1.86    0       2       72      
0.620576        5       54.8    20.63   74.32657        0       44      1       
4       0
0       11001   120.883 120.883 0       0.597   0       2       120     
-0.51584        5       54.8    20.63   74.32657        0       44      1       
6       0
0       11001   144.9   144.9   0       0.356   0       2       144     
-1.03282        5       54.8    20.63   74.32657        0       44      1       
7       0
0       11001   168.883 168.883 0       0.177   0       2       168     
-1.73161        5       54.8    20.63   74.32657        0       44      1       
8       0



--

Reply via email to