Selina Chu created CTAKES-374:
---------------------------------

             Summary: Scale out of cTAKES pipeline. Finding better ways to 
allow cTAKES to be easily run in a distributed fashion.
                 Key: CTAKES-374
                 URL: https://issues.apache.org/jira/browse/CTAKES-374
             Project: cTAKES
          Issue Type: New Feature
    Affects Versions: future enhancement
            Reporter: Selina Chu
             Fix For: 3.2.1


Currently, cTAKES can't be easily deployed in an asynchronous manner. UIMA 
components aren't serializable (and thus cTAKES' components as well).  Would 
like to come up with better ways to allow cTAKES to be easily run in a 
distributed fashion.

For example, for processing a long document (e.g. 10+ pages), cTAKES would take 
a long time to process.

I would like to see a feature where we can partition the input to cTAKES, in a 
way that won't affect the cTAKES annotation performance, allowing us to process 
through a cluster running in distributed mode (e.g. Spark streaming cTAKES).  
And then recombine the results such that the word/phrase token positions will 
be sequentially ordered.

We have a simple implementation of the ClinicalPipelineFactory with Spark 
Streaming.  Currently our initial attempt in partitioning is by paragraphs. For 
example, we are doing something like:
RDD.map(a_single_paragraph.process_in_ctakes())

I also wanted to see if there are any better ways of doing this.  





--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to