[ 
https://issues.apache.org/jira/browse/GROOVY-9159?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Daniel Sun updated GROOVY-9159:
-------------------------------
    Description: 
_{color:#d04437}(Note: The exact syntax might be altered before introduction, 
currently working on the general principle){color}_

GINQ will reuse most of standard SQL syntax, which can make the learning curve 
smooth and avoid infringing the patent of Microsoft.

All GINQ related keywords are uppercase to avoid breaking existing source code 
as possible as we can, e.g. {{FROM}}, {{WHERE}}, {{SELECT}}, etc.

In order to support type inference better, {{SELECT}} clause is placed at the 
end of GINQ expression.

h2. EBNF
h3.  TBD 
h2. Examples
h3. 1. Filtering
{code:java}
@groovy.transform.EqualsAndHashCode
class Person {
        String name
        int age
}

def persons = [new Person(name: 'Daniel', age: 35), new Person(name: 'Peter', 
age: 10), new Person(name: 'Alice', age: 22)]

def result =
        FROM persons p       // p is an alias
        WHERE p.age > 15 AND p.age <= 35
        SELECT p.name

assert ['Daniel', 'Alice'] == result

result =
        FROM persons p       // p is an alias
        WHERE p.age > 15 AND p.age <= 35
        SELECT p.VALUE

assert [new Person(name: 'Daniel', age: 35), new Person(name: 'Alice', age: 
22)] == result
{code}
{code:java}
def numbers = [1, 2, 3]

def result =
        FROM numbers t       // t is an alias
        WHERE t.VALUE <= 2  // VALUE is a virtual property
        SELECT t.VALUE

assert [1, 2] == result
{code}
h3. 2. Joining
{code:java}
import static groovy.lang.Tuple.*

@groovy.transform.EqualsAndHashCode
class Person {
        String name
        int age
        City city
}

@groovy.transform.EqualsAndHashCode
class City {
        String name
}

def persons = [new Person(name: 'Daniel', age: 35, city: new City('Shanghai')), 
new Person(name: 'Peter', age: 10, city: new City('Beijing')), new Person(name: 
'Alice', age: 22, city: new City('Hangzhou'))]

def cities = [new City('Shanghai'), new City('Beijing'), new City('Guangzhou')]

// inner join
def result =
        FROM persons p INNER JOIN cities c
        ON p.city.name = c.name
        SELECT p.name

assert ['Daniel', 'Peter'] == result

result =
        FROM persons p, cities c
        WHERE p.city.name = c.name
        SELECT p.name

assert ['Daniel', 'Peter'] == result

result =
        FROM persons p, cities c
        WHERE p.city = c.VALUE
        SELECT p.name

assert ['Daniel', 'Peter'] == result

// left outer join
result =
        FROM persons p LEFT JOIN cities c  //  same to LEFT OUTER JOIN
        ON p.city.name = c.name
        SELECT p.name, c.name

assert [tuple('Daniel', 'Shanghai'), tuple('Peter', 'Beijing'), tuple('Alice', 
null)] == result

// right outer join
result =
        FROM persons p RIGHT JOIN cities c  //  same to RIGHT OUTER JOIN
        ON p.city.name = c.name
        SELECT p.name, c.name

assert [tuple('Daniel', 'Shanghai'), tuple('Peter', 'Beijing'), tuple(null, 
'Guangzhou')] == result
{code}
h3. 3. Projection
{code:java}
import static groovy.lang.Tuple.*

@groovy.transform.EqualsAndHashCode
class Person {
        String name
        int age
}

def persons = [new Person(name: 'Daniel', age: 35), new Person(name: 'Peter', 
age: 10), new Person(name: 'Alice', age: 22)]

def result =
        FROM persons p
        SELECT p.name

assert ['Daniel', 'Peter', 'Alice'] == result

result =
        FROM persons p
        SELECT p.name, p.age

assert [tuple('Daniel', 35), tuple('Peter', 10), tuple('Alice', 22)] == result

result =
        FROM persons p
        SELECT [name: p.name, age: p.age]

assert [ [name: 'Daniel', age: 35], [name: 'Peter', age: 10], [name: 'Alice', 
age: 22] ] == result

result =
        FROM persons p
        SELECT new Person(name: p.name, age: p.age)

assert persons == result

result =
        FROM persons p
        SELECT p.VALUE

assert persons == result
{code}

h3. 4. Grouping
{code:java}
import static groovy.lang.Tuple.*

@groovy.transform.EqualsAndHashCode
class Person {
        String name
        int age
        String gender
}

def persons = [new Person(name: 'Daniel', age: 35, gender: 'Male'), new 
Person(name: 'Peter', age: 10, gender: 'Male'), new Person(name: 'Alice', age: 
22, gender: 'Female')]

def result =
        FROM persons p
        GROUP BY p.gender
        SELECT p.gender, MAX(p.age)

assert [tuple('Male', 35), tuple('Female', 22)] == result
{code}

h3. 5. Sorting
{code:java}
@groovy.transform.EqualsAndHashCode
class Person {
        String name
        int age
}

def persons = [new Person(name: 'Daniel', age: 35), new Person(name: 'Peter', 
age: 10), new Person(name: 'Alice', age: 22)]

def result =
        FROM persons p
        ORDER BY p.age
        SELECT p.name

assert ['Peter', 'Alice', 'Daniel'] == result

result =
        FROM persons p
        ORDER BY p.age desc
        SELECT p.name

assert ['Daniel', 'Alice', 'Peter'] == result
{code}

h3. 6. Pagination
{code:java}
def numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

def result =
        FROM numbers n
        LIMIT 5 OFFSET 2

assert [2, 3, 4, 5, 6] == result

result =
        FROM numbers n
        LIMIT 5

assert [0, 1, 2, 3, 4] == result
{code}



  was:
_{color:#d04437}(Note: The exact syntax might be altered before introduction, 
currently working on the general principle){color}_

GINQ will reuse most of standard SQL syntax, which can make the learning curve 
smooth and avoid infringing the patent of Microsoft.

All GINQ related keywords are uppercase to avoid breaking existing source code 
as possible as we can, e.g. {{FROM}}, {{WHERE}}, {{SELECT}}, etc.

In order to support type inference better, {{SELECT}} clause is placed at the 
end of GINQ expression.

h2. EBNF
h3.  TBD 
h2. Examples
h3. 1. Filtering
{code:java}
@groovy.transform.EqualsAndHashCode
class Person {
        String name
        int age
}

def persons = [new Person(name: 'Daniel', age: 35), new Person(name: 'Peter', 
age: 10), new Person(name: 'Alice', age: 22)]

def result =
        FROM persons p       // p is an alias
        WHERE p.age > 15 AND p.age <= 35
        SELECT p.name

assert ['Daniel', 'Alice'] == result

result =
        FROM persons p       // p is an alias
        WHERE p.age > 15 AND p.age <= 35
        SELECT p.VALUE

assert [new Person(name: 'Daniel', age: 35), new Person(name: 'Alice', age: 
22)] == result
{code}
{code:java}
def numbers = [1, 2, 3]

def result =
        FROM numbers t       // t is an alias
        WHERE t.VALUE <= 2  // VALUE is a virtual property
        SELECT t.VALUE

assert [1, 2] == result
{code}
h3. 2. Joining
{code:java}
import static groovy.lang.Tuple.*

@groovy.transform.EqualsAndHashCode
class Person {
        String name
        int age
        City city
}

@groovy.transform.EqualsAndHashCode
class City {
        String name
}

def persons = [new Person(name: 'Daniel', age: 35, city: new City('Shanghai')), 
new Person(name: 'Peter', age: 10, city: new City('Beijing')), new Person(name: 
'Alice', age: 22, city: new City('Hangzhou'))]

def cities = [new City('Shanghai'), new City('Beijing'), new City('Guangzhou')]

// inner join
def result =
        FROM persons p INNER JOIN cities c
        ON p.city.name = c.name
        SELECT p.name

assert ['Daniel', 'Peter'] == result

result =
        FROM persons p, cities c
        WHERE p.city.name = c.name
        SELECT p.name

assert ['Daniel', 'Peter'] == result

result =
        FROM persons p, cities c
        WHERE p.city = c.VALUE
        SELECT p.name

assert ['Daniel', 'Peter'] == result

// left outer join
result =
        FROM persons p LEFT JOIN cities c  //  same to LEFT OUTER JOIN
        ON p.city.name = c.name
        SELECT p.name, c.name

assert [tuple('Daniel', 'Shanghai'), tuple('Peter', 'Beijing'), tuple('Alice', 
null)] == result

// right outer join
result =
        FROM persons p RIGHT JOIN cities c  //  same to RIGHT OUTER JOIN
        ON p.city.name = c.name
        SELECT p.name, c.name

assert [tuple('Daniel', 'Shanghai'), tuple('Peter', 'Beijing'), tuple(null, 
'Guangzhou')] == result
{code}
h3. 3. Projection
{code:java}
import static groovy.lang.Tuple.*

@groovy.transform.EqualsAndHashCode
class Person {
        String name
        int age
}

def persons = [new Person(name: 'Daniel', age: 35), new Person(name: 'Peter', 
age: 10), new Person(name: 'Alice', age: 22)]

def result =
        FROM persons p
        SELECT p.name

assert ['Daniel', 'Peter', 'Alice'] == result

result =
        FROM persons p
        SELECT p.name, p.age

assert [tuple('Daniel', 35), tuple('Peter', 10), tuple('Alice', 22)] == result

result =
        FROM persons p
        SELECT [name: p.name, age: p.age]

assert [ [name: 'Daniel', age: 35], [name: 'Peter', age: 10], [name: 'Alice', 
age: 22] ] == result

result =
        FROM persons p
        SELECT new Person(name: p.name, age: p.age)

assert persons == result

result =
        FROM persons p
        SELECT p.VALUE

assert persons == result
{code}
h3. 4. Sorting
{code:java}
@groovy.transform.EqualsAndHashCode
class Person {
        String name
        int age
}

def persons = [new Person(name: 'Daniel', age: 35), new Person(name: 'Peter', 
age: 10), new Person(name: 'Alice', age: 22)]

def result =
        FROM persons p
        ORDER BY p.age
        SELECT p.name

assert ['Peter', 'Alice', 'Daniel'] == result

result =
        FROM persons p
        ORDER BY p.age desc
        SELECT p.name

assert ['Daniel', 'Alice', 'Peter'] == result
{code}
h3. 5. Grouping
{code:java}
import static groovy.lang.Tuple.*

@groovy.transform.EqualsAndHashCode
class Person {
        String name
        int age
        String gender
}

def persons = [new Person(name: 'Daniel', age: 35, gender: 'Male'), new 
Person(name: 'Peter', age: 10, gender: 'Male'), new Person(name: 'Alice', age: 
22, gender: 'Female')]

def result =
        FROM persons p
        GROUP BY p.gender
        SELECT p.gender, MAX(p.age)

assert [tuple('Male', 35), tuple('Female', 22)] == result
{code}
h3. 6. Pagination
{code:java}
def numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

def result =
        FROM numbers n
        LIMIT 5 OFFSET 2

assert [2, 3, 4, 5, 6] == result

result =
        FROM numbers n
        LIMIT 5

assert [0, 1, 2, 3, 4] == result
{code}




> [GEP] Support LINQ, aka GINQ
> ----------------------------
>
>                 Key: GROOVY-9159
>                 URL: https://issues.apache.org/jira/browse/GROOVY-9159
>             Project: Groovy
>          Issue Type: New Feature
>            Reporter: Daniel Sun
>            Priority: Major
>             Fix For: 4.x
>
>
> _{color:#d04437}(Note: The exact syntax might be altered before introduction, 
> currently working on the general principle){color}_
> GINQ will reuse most of standard SQL syntax, which can make the learning 
> curve smooth and avoid infringing the patent of Microsoft.
> All GINQ related keywords are uppercase to avoid breaking existing source 
> code as possible as we can, e.g. {{FROM}}, {{WHERE}}, {{SELECT}}, etc.
> In order to support type inference better, {{SELECT}} clause is placed at the 
> end of GINQ expression.
> h2. EBNF
> h3.  TBD 
> h2. Examples
> h3. 1. Filtering
> {code:java}
> @groovy.transform.EqualsAndHashCode
> class Person {
>       String name
>       int age
> }
> def persons = [new Person(name: 'Daniel', age: 35), new Person(name: 'Peter', 
> age: 10), new Person(name: 'Alice', age: 22)]
> def result =
>       FROM persons p       // p is an alias
>       WHERE p.age > 15 AND p.age <= 35
>       SELECT p.name
> assert ['Daniel', 'Alice'] == result
> result =
>       FROM persons p       // p is an alias
>       WHERE p.age > 15 AND p.age <= 35
>       SELECT p.VALUE
> assert [new Person(name: 'Daniel', age: 35), new Person(name: 'Alice', age: 
> 22)] == result
> {code}
> {code:java}
> def numbers = [1, 2, 3]
> def result =
>       FROM numbers t       // t is an alias
>       WHERE t.VALUE <= 2  // VALUE is a virtual property
>       SELECT t.VALUE
> assert [1, 2] == result
> {code}
> h3. 2. Joining
> {code:java}
> import static groovy.lang.Tuple.*
> @groovy.transform.EqualsAndHashCode
> class Person {
>       String name
>       int age
>       City city
> }
> @groovy.transform.EqualsAndHashCode
> class City {
>       String name
> }
> def persons = [new Person(name: 'Daniel', age: 35, city: new 
> City('Shanghai')), new Person(name: 'Peter', age: 10, city: new 
> City('Beijing')), new Person(name: 'Alice', age: 22, city: new 
> City('Hangzhou'))]
> def cities = [new City('Shanghai'), new City('Beijing'), new 
> City('Guangzhou')]
> // inner join
> def result =
>       FROM persons p INNER JOIN cities c
>       ON p.city.name = c.name
>       SELECT p.name
> assert ['Daniel', 'Peter'] == result
> result =
>       FROM persons p, cities c
>       WHERE p.city.name = c.name
>       SELECT p.name
> assert ['Daniel', 'Peter'] == result
> result =
>       FROM persons p, cities c
>       WHERE p.city = c.VALUE
>       SELECT p.name
> assert ['Daniel', 'Peter'] == result
> // left outer join
> result =
>       FROM persons p LEFT JOIN cities c  //  same to LEFT OUTER JOIN
>       ON p.city.name = c.name
>       SELECT p.name, c.name
> assert [tuple('Daniel', 'Shanghai'), tuple('Peter', 'Beijing'), 
> tuple('Alice', null)] == result
> // right outer join
> result =
>       FROM persons p RIGHT JOIN cities c  //  same to RIGHT OUTER JOIN
>       ON p.city.name = c.name
>       SELECT p.name, c.name
> assert [tuple('Daniel', 'Shanghai'), tuple('Peter', 'Beijing'), tuple(null, 
> 'Guangzhou')] == result
> {code}
> h3. 3. Projection
> {code:java}
> import static groovy.lang.Tuple.*
> @groovy.transform.EqualsAndHashCode
> class Person {
>       String name
>       int age
> }
> def persons = [new Person(name: 'Daniel', age: 35), new Person(name: 'Peter', 
> age: 10), new Person(name: 'Alice', age: 22)]
> def result =
>       FROM persons p
>       SELECT p.name
> assert ['Daniel', 'Peter', 'Alice'] == result
> result =
>       FROM persons p
>       SELECT p.name, p.age
> assert [tuple('Daniel', 35), tuple('Peter', 10), tuple('Alice', 22)] == result
> result =
>       FROM persons p
>       SELECT [name: p.name, age: p.age]
> assert [ [name: 'Daniel', age: 35], [name: 'Peter', age: 10], [name: 'Alice', 
> age: 22] ] == result
> result =
>       FROM persons p
>       SELECT new Person(name: p.name, age: p.age)
> assert persons == result
> result =
>       FROM persons p
>       SELECT p.VALUE
> assert persons == result
> {code}
> h3. 4. Grouping
> {code:java}
> import static groovy.lang.Tuple.*
> @groovy.transform.EqualsAndHashCode
> class Person {
>       String name
>       int age
>       String gender
> }
> def persons = [new Person(name: 'Daniel', age: 35, gender: 'Male'), new 
> Person(name: 'Peter', age: 10, gender: 'Male'), new Person(name: 'Alice', 
> age: 22, gender: 'Female')]
> def result =
>       FROM persons p
>       GROUP BY p.gender
>       SELECT p.gender, MAX(p.age)
> assert [tuple('Male', 35), tuple('Female', 22)] == result
> {code}
> h3. 5. Sorting
> {code:java}
> @groovy.transform.EqualsAndHashCode
> class Person {
>       String name
>       int age
> }
> def persons = [new Person(name: 'Daniel', age: 35), new Person(name: 'Peter', 
> age: 10), new Person(name: 'Alice', age: 22)]
> def result =
>       FROM persons p
>       ORDER BY p.age
>       SELECT p.name
> assert ['Peter', 'Alice', 'Daniel'] == result
> result =
>       FROM persons p
>       ORDER BY p.age desc
>       SELECT p.name
> assert ['Daniel', 'Alice', 'Peter'] == result
> {code}
> h3. 6. Pagination
> {code:java}
> def numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
> def result =
>       FROM numbers n
>       LIMIT 5 OFFSET 2
> assert [2, 3, 4, 5, 6] == result
> result =
>       FROM numbers n
>       LIMIT 5
> assert [0, 1, 2, 3, 4] == result
> {code}



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to