This is an automated email from the ASF dual-hosted git repository.

ptupitsyn pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/ignite-website.git


The following commit(s) were added to refs/heads/master by this push:
     new 105d7a6033 IGNITE-27328 Publish part 4 of AI3 architecture blog (#295)
105d7a6033 is described below

commit 105d7a6033cad040582858f455970efbb8db670c
Author: jinxxxoid <[email protected]>
AuthorDate: Wed Dec 17 12:53:41 2025 +0400

    IGNITE-27328 Publish part 4 of AI3 architecture blog (#295)
---
 _src/_blog/apache-ignite-3-architecture-part-4.pug | 452 +++++++++++
 blog/apache-ignite-3-architecture-part-4.html      | 878 +++++++++++++++++++++
 blog/apache/index.html                             |  16 +
 blog/ignite/index.html                             |  16 +
 blog/index.html                                    |  16 +
 5 files changed, 1378 insertions(+)

diff --git a/_src/_blog/apache-ignite-3-architecture-part-4.pug 
b/_src/_blog/apache-ignite-3-architecture-part-4.pug
new file mode 100644
index 0000000000..5ac36453e5
--- /dev/null
+++ b/_src/_blog/apache-ignite-3-architecture-part-4.pug
@@ -0,0 +1,452 @@
+---
+title: "Apache Ignite Architecture Series: Part 4 - Integrated Platform 
Performance: Maintaining Speed Under Pressure"
+author: "Michael Aglietti"
+date: 2025-12-16
+tags:
+    - apache
+    - ignite
+---
+
+p Traditional systems force a choice: real-time analytics or fast 
transactions. Apache Ignite eliminates this trade-off with integrated platform 
performance that delivers both simultaneously.
+
+<!-- end -->
+
+p Financial trades execute in microseconds while risk analytics run 
concurrently on the same live data. Compliance reporting processes millions of 
transactions without blocking operational processing. This happens through a 
unified performance architecture that maintains speed characteristics across 
all workload types.
+
+p #[strong Real-time analytics breakthrough: query live transactional data 
without ETL delays or performance interference.]
+
+hr
+br
+
+h2 Performance Comparison: Traditional vs Integrated
+
+h3 Traditional Multi-System Performance
+
+p #[strong Concrete performance degradation in financial trading systems:]
+
+p #[strong Resource Competition Example] (Financial Trading System):
+
+pre
+  code.
+    // Traditional system: workloads interfere with each other
+    public class TradingSystemBottlenecks {
+
+        public void processTradeWithInterference() {
+            long tradeStart = System.nanoTime();
+
+            // 1. High-frequency trading (requires <100μs)
+            Trade trade = executeTradeLogic();  // Target: 50μs
+
+            // But system is also running:
+            // - Risk analytics (heavy CPU usage)
+            // - Compliance reporting (heavy I/O)
+            // - Position calculations (memory pressure)
+
+            long actualTime = System.nanoTime() - tradeStart;
+            // Result: 300-2000 microseconds instead of 50 microseconds (6-40x 
degradation)
+        }
+    }
+
+p #[strong Performance interference causes:]
+ul
+  li #[strong CPU competition]: Analytics consume CPU needed for microsecond 
trading
+  li #[strong Memory competition]: Large queries trigger garbage collection 
during trades
+  li #[strong I/O competition]: Batch reports block transaction log writes
+  li #[strong Network competition]: Cross-system data movement affects all 
operations
+
+h3 Multi-System Performance Fragmentation
+
+p Separating workloads creates different performance problems:
+
+pre.mermaid.
+    flowchart TB
+        subgraph "Separate Systems"
+            Trading[Trading System<br/>50μs trades<br/>BUT: Stale risk data]
+            Analytics[Analytics System<br/>Fast queries<br/>BUT: Delayed trade 
data]
+            Reporting[Reporting System<br/>Complete data<br/>BUT: 10-30min lag]
+        end
+
+        subgraph "Data Movement Overhead"
+            Sync1[Trading → Analytics<br/>2-5ms synchronization]
+            Sync2[Analytics → Reporting<br/>Batch ETL delays]
+            Sync3[Cross-system validation<br/>10-50ms coordination]
+        end
+
+        Trading -->|Real-time feed| Sync1
+        Sync1 --> Analytics
+        Analytics -->|Hourly batch| Sync2
+        Sync2 --> Reporting
+        Reporting -->|Compliance check| Sync3
+        Sync3 --> Trading
+
+p #[strong Performance Trade-off Reality:]
+ul
+  li Fast trading with stale risk calculations (compliance risk)
+  li Fresh analytics with trading delays (performance risk)
+  li Complete reporting with operational lag (business risk)
+
+hr
+br
+
+h2 Apache Ignite Integrated Performance Architecture
+
+h3 Before/After Performance Transformation
+
+p #[strong Traditional: Choose between fast transactions OR real-time 
analytics]
+ul
+  li Trading: 50 microseconds per trade (when analytics are OFF)
+  li Analytics: 2-5 second query response (when trading is PAUSED)
+  li Reports: 10-30 minute ETL delay before data availability
+
+p #[strong Integrated Platform: Fast transactions AND real-time analytics 
simultaneously]
+ul
+  li Trading: 50 microseconds per trade (while analytics run concurrently)
+  li Analytics: 100-500 milliseconds query response (on live trading data)
+  li Reports: Real-time query results (no ETL delays)
+
+h3 Storage Engine Performance Strategy
+
+p Apache Ignite provides two storage engines that solve different performance 
challenges:
+
+p #[strong Memory-Only Storage (aimem)]: Optimized for latency-critical 
workloads requiring maximum speed. High-frequency trading operations, real-time 
analytics calculations, and session data management benefit from pure memory 
operations without persistence overhead. Performance characteristics focus on 
microsecond response times.
+
+p #[strong Memory-First Persistence (aipersist)]: Combines memory-speed access 
with durability guarantees through asynchronous persistence. Financial 
transactions, audit logs, and regulatory data maintain ACID properties while 
achieving memory-speed performance. Background checkpointing provides 
durability without blocking operations.
+
+p #[strong Storage Engine Benefits:]
+ul
+  li #[strong Performance optimization]: Each engine optimizes for specific 
workload characteristics
+  li #[strong Operational flexibility]: Choose durability vs speed based on 
data requirements
+  li #[strong Resource efficiency]: Avoid persistence overhead when durability 
isn't required
+  li #[strong Mixed workload support]: Different tables use different engines 
within the same cluster
+
+h3 Memory Management for Consistent Performance
+
+p Page-based memory management eliminates the serialization overhead and 
garbage collection interference that affects performance predictability in 
traditional systems:
+
+p #[strong Performance Architecture Benefits:]
+ul
+  li #[strong Predictable access times]: Direct memory operations without GC 
interference
+  li #[strong Zero serialization overhead]: Binary operations on native memory 
layouts
+  li #[strong Cache efficiency]: Page-based data organization optimizes CPU 
cache usage
+  li #[strong Linear memory scaling]: Performance grows directly with 
available RAM
+
+p #[strong The Integration Advantage]: Instead of managing memory efficiency 
at the application level, the platform handles memory optimization 
automatically while maintaining the simple APIs your business logic requires.
+
+h3 Asynchronous API Design for Concurrent Processing
+
+p High-velocity applications require non-blocking operations to maximize 
resource utilization:
+
+pre
+  code.
+    // Concurrent processing without blocking
+    public class ConcurrentTradingProcessor {
+
+        public CompletableFuture&lt;TradingResult&gt 
processConcurrentWorkloads(IgniteClient client) {
+            // Execute multiple operations concurrently
+            CompletableFuture&lt;Trade&gt tradeExecution = 
client.transactions().runInTransactionAsync(tx ->
+                client.sql().executeAsync(tx, "INSERT INTO trades VALUES (?, 
?, ?)", tradeId, amount, timestamp)
+            );
+
+            CompletableFuture&lt;RiskMetrics&gt riskCalculation = 
client.compute().executeAsync(
+                JobTarget.colocated("trades", tradeId),
+                RiskCalculationJob.class, tradeId
+            );
+
+            CompletableFuture&lt;ComplianceResult&gt complianceCheck = 
client.compute().executeAsync(
+                JobTarget.colocated("trades", tradeId),
+                ComplianceValidationJob.class, tradeId
+            );
+
+            // Combine results when all complete
+            return CompletableFuture.allOf(tradeExecution, riskCalculation, 
complianceCheck)
+                .thenApply(v -> new TradingResult(
+                    tradeExecution.join(),
+                    riskCalculation.join(),
+                    complianceCheck.join()
+                ));
+        }
+    }
+
+p #[strong Concurrency Benefits:]
+ul
+  li #[strong Resource utilization]: CPU cores stay busy while I/O completes
+  li #[strong Throughput scaling]: Process multiple operations per thread
+  li #[strong Latency hiding]: Overlapping operations reduce total processing 
time
+
+hr
+br
+
+h2 Performance Under Real-World Load Conditions
+
+h3 Performance Under Mixed Workloads
+
+p #[strong High-Frequency Trading Performance:]
+
+p Trade processing achieves sub-microsecond operations through memory-resident 
data access. Portfolio validation, risk calculations, and trade execution 
happen locally without network calls. Performance scales linearly with 
available CPU cores while maintaining consistent latency.
+
+p #[strong Concurrent Analytics Performance:]
+
+p Risk analytics run simultaneously with live trading without mutual 
interference. Portfolio analysis queries process the same data that trading 
operations update, but analytics access consistent snapshots without blocking 
trade execution. Complex SQL aggregations complete while high-frequency trading 
continues at full speed.
+
+p #[strong The Performance Integration]: Traditional systems force trade-offs 
between transaction speed and analytical capability. Integrated platform 
performance eliminates these constraints by supporting both workload types 
within the same optimized architecture.
+
+h3 Unified Access Performance Characteristics
+
+p #[strong Here's how the same data maintains optimal performance across 
different access patterns:]
+
+pre
+  code.
+    // Trading data accessed through optimal API for each use case
+    Table tradesTable = client.tables().table("trades");
+    // 1. Key-value access for high-frequency lookups
+    Trade trade = tradesTable.keyValueView()
+        .get(tx, Tuple.create().set("trade_id", tradeId));     // <1 ms lookup
+    // 2. SQL access for complex risk analytics
+    ResultSet&lt;SqlRow&gt; riskAnalysis = client.sql().execute(tx,
+        "SELECT account_id, SUM(quantity * price) as exposure " +
+        "FROM trades WHERE trade_date = CURRENT_DATE " +
+        "GROUP BY account_id HAVING exposure > 1000000");      // Parallel 
execution
+    // 3. Record access for type-safe transaction processing
+    TradeRecord record = tradesTable.recordView()
+        .get(tx, new TradeRecord(tradeId));                     // Type-safe 
operations
+
+p #[strong Performance Optimization per Access Pattern:]
+ul
+  li #[strong Key-value operations]: Direct memory access with microsecond 
response times
+  li #[strong SQL operations]: Query optimization with parallel execution and 
colocation
+  li #[strong Record operations]: Type-safe processing without serialization 
overhead
+  li #[strong All operations]: Share same memory-resident data and transaction 
guarantees
+
+p #[strong The unified performance advantage]: Each access method optimizes 
for its specific use case while operating against the same high-performance 
data store. No performance compromises, no data movement overhead.
+
+h3 Compliance Reporting Performance
+
+p #[strong Regulatory Reporting Without Operational Impact:]
+
+p Compliance reporting processes millions of transactions for regulatory 
analysis while live trading continues at full speed. Complex aggregation 
queries scan large datasets to identify position limit violations, unusual 
trading patterns, and risk exposure calculations. These operations complete 
without blocking operational processing through concurrent access control.
+
+p #[strong Performance Characteristics:]
+ul
+  li #[strong High data scan rate]: Reports process complete trading datasets 
efficiently
+  li #[strong Minimal operational impact]: Compliance queries run concurrently 
with live trading
+  li #[strong Memory efficient processing]: Large-scale aggregations use 
streaming patterns
+  li #[strong Transactional consistency]: Reports reflect exact point-in-time 
data state
+
+h3 Real-Time Analytics Without ETL
+
+p #[strong Live transactional data analytics without traditional ETL delays:]
+
+pre
+  code.
+    // Analytics query running against live trading data
+    // Read-only transaction for snapshot isolation
+    Transaction readOnlyTx = client.transactions().begin(new 
TransactionOptions().readOnly(true));
+    ResultSet&lt;SqlRow&gt; liveRiskAnalysis = 
client.sql().execute(readOnlyTx, """
+        SELECT
+            account_id,
+            symbol,
+            SUM(quantity * price) as current_exposure,
+            COUNT(*) as trade_count,
+            MAX(timestamp) as last_trade
+        FROM trades
+        WHERE trade_date = CURRENT_DATE
+          AND status = 'EXECUTED'
+        GROUP BY account_id, symbol
+        HAVING current_exposure > 1000000
+        ORDER BY current_exposure DESC
+    """);
+    // This query runs concurrently with:
+    // - Live trading operations inserting new trades
+    // - Risk systems updating positions
+    // - Settlement processes modifying trade status
+    // - All without blocking any operational processing
+
+p #[strong The Real-Time Analytics Breakthrough:]
+ul
+  li #[strong No ETL delays]: Analytics queries run directly against 
operational data
+  li #[strong No data staleness]: See trades and positions as they happen, not 
hours later
+  li #[strong No system separation]: Same data serves both operations and 
analytics
+  li #[strong No performance interference]: Concurrent access prevents 
analytics from blocking operations
+
+p #[strong Traditional ETL Problem Solved:]
+
+pre
+  code.
+    // Traditional: Wait for ETL, work with stale data
+    // 1. Trading system writes trades
+    // 2. ETL process extracts (30 min delay)
+    // 3. Analytics warehouse loads (60 min delay)
+    // 4. Dashboard shows 90-minute-old data
+    // Ignite 3: Instant analytics on live data
+    // 1. Trading system writes trades
+    // 2. Analytics queries see data immediately
+    // 3. Dashboard shows real-time positions
+
+p #[strong The integrated approach]: The operational database becomes the 
analytics database when designed for both workloads. No more choosing between 
fresh data and analytical power.
+
+h3 Intelligent Flow Control Under Extreme Load
+
+p #[strong The system pressure challenge]: During traffic spikes (market 
volatility, Black Friday, viral events), traditional systems either drop 
connections or crash. Apache Ignite responds intelligently with automatic 
backpressure that maintains system stability while preserving data integrity.
+
+pre
+  code.
+    // Intelligent backpressure prevents system collapse during traffic spikes
+    DataStreamerOptions options = DataStreamerOptions.builder()
+        .pageSize(10_000)                    // Batch size control
+        .perPartitionParallelOperations(4)   // Concurrency limits per 
partition
+        .autoFlushInterval(1000)             // Memory pressure relief (1 
second)
+        .retryLimit(32)                      // Resilience under pressure
+        .build();
+    // Publisher provides intelligent flow control - automatically throttles 
when system pressure detected
+    try (var publisher = new 
SubmissionPublisherDataStreamerItem&lt;TradeRecord&gt()) {
+        CompletableFuture&lt;Void&gt streamerFut = 
tradesTable.recordView().streamData(publisher, options);
+
+        // System automatically applies backpressure when memory pressure or 
partition limits reached
+        // Instead of dropping connections, Ignite 3 intelligently throttles 
input rates
+        publisher.submit(DataStreamerItem.of(tradeRecord));
+
+        streamerFut.join(); // Completes when all data processed with 
backpressure applied
+    }
+
+p #[strong Backpressure vs Traditional Approaches:]
+
+pre.mermaid.
+    flowchart LR
+        subgraph "System Under Load"
+            Events1[High Traffic Spike 50,000 events/sec]
+            DB1[(Traditional Database)]
+            Crash1[System Overload 503 Service Unavailable]
+            Loss1[Data Lost Revenue Impact Customer Complaints]
+
+            Events1 -->|Overwhelms| DB1
+            DB1 -->|Cannot Handle Load| Crash1
+            Crash1 --> Loss1
+        end
+
+pre.mermaid.
+    flowchart LR
+        subgraph "Ignite 3 Backpressure"
+            Events2[High Traffic Spike 50,000 events/sec]
+            Ignite[Apache Ignite Backpressure Control]
+            Throttle[Intelligent Throttling Flow Control Active]
+            Success[System Stable Data Preserved 99.9% Uptime]
+
+            Events2 -->|High Load Detected| Ignite
+            Ignite -->|Applies Backpressure| Throttle
+            Throttle -->|Maintains Stability| Success
+        end
+
+p #[strong Traditional Database]: "503 Service Unavailable" → Connections 
dropped, data lost
+br
+p #[strong Apache Ignite]: "Intelligent throttling" → System stays up, data 
preserved
+
+p #[strong Real-world scenarios where backpressure saves systems:]
+ul
+  li #[strong Market volatility]: 10x normal trading volume handled gracefully 
without transaction loss
+  li #[strong IoT sensor bursts]: 50M device readings processed without memory 
exhaustion
+  li #[strong E-commerce spikes]: Black Friday traffic managed without dropped 
orders
+  li #[strong Data migration]: 100TB+ datasets streamed without overwhelming 
target systems
+
+p #[strong The wow moment]: While competitors' systems crash during peak 
demand, yours maintains 99.9% uptime through intelligent flow control that 
automatically adapts to system pressure.
+
+hr
+br
+
+h2 Performance Optimization Strategies
+
+h3 Workload-Specific Optimization
+
+p #[strong Trading Workload Optimization:]
+
+p High-frequency trading tables use the volatile memory engine (aimem) for 
maximum speed. Tables configure colocation by account ID to ensure related 
trades process on the same nodes. Distribution zones optimize partition count 
and replica settings for trading-specific access patterns.
+
+p #[strong Analytics Workload Optimization:]
+
+p Analytical processing uses the persistent memory engine (aipersist) for 
durability with memory-speed access. Market data tables colocate by symbol to 
optimize time-series queries. Higher partition counts distribute analytical 
workloads across more nodes for better parallelization.
+
+p #[strong Configuration Benefits:]
+ul
+  li #[strong Workload isolation]: Different storage engines prevent 
interference between workload types
+  li #[strong Access optimization]: Colocation strategies minimize network 
overhead for common query patterns
+  li #[strong Resource utilization]: Optimized partition counts maximize 
hardware utilization
+  li #[strong Performance predictability]: Configuration choices align with 
specific performance requirements
+
+h3 Performance Monitoring and Validation
+
+p #[strong Continuous Performance Validation:]
+
+p Integrated performance monitoring tracks latency histograms and throughput 
gauges across all workload types. The system measures interference patterns 
between trading, analytics, and reporting operations to ensure performance 
isolation. Automated validation confirms that trading latency remains below 
microsecond thresholds while analytical queries maintain their target response 
times.
+
+p #[strong Performance Validation Results:]
+ul
+  li #[strong Trading performance]: Sub-microsecond 99.9th percentile latency 
under mixed loads
+  li #[strong Analytics performance]: Consistent query response times 
regardless of trading volume
+  li #[strong Interference detection]: Less than 5% mutual performance impact 
between workload types
+  li #[strong Capacity planning]: Predictable scaling characteristics enable 
accurate resource allocation
+
+hr
+br
+
+h2 Business Impact of Consistent Performance
+
+h3 Risk Reduction Through Performance Predictability
+
+p #[strong Financial Risk Mitigation:]
+ul
+  li #[strong Trading execution]: Consistent low-latency execution prevents 
slippage
+  li #[strong Risk calculations]: Real-time risk assessment prevents 
overexposure
+  li #[strong Compliance monitoring]: Immediate violation detection prevents 
penalties
+
+p #[strong Operational Risk Mitigation:]
+ul
+  li #[strong System capacity]: Predictable performance enables accurate 
capacity planning
+  li #[strong SLA compliance]: Consistent performance characteristics enable 
SLA guarantees
+  li #[strong Incident reduction]: Performance predictability reduces 
operational incidents
+
+h3 Revenue Impact of Performance Consistency
+
+p #[strong High-Frequency Trading Firm Benefits:]
+ul
+  li #[strong Execution advantage]: Microsecond latency improvements translate 
to competitive advantage
+  li #[strong Risk management]: Real-time risk assessment prevents significant 
financial exposure
+  li #[strong Operational efficiency]: Consistent performance reduces manual 
intervention needs
+
+p #[strong E-commerce Platform Benefits:]
+ul
+  li #[strong Response time consistency]: Low-latency checkout processes 
improve conversion rates
+  li #[strong Analytics availability]: Real-time insights enable rapid revenue 
optimization
+  li #[strong System reliability]: High availability during peak load prevents 
revenue loss
+
+h3 Competitive Advantage Through Integration
+
+p #[strong Market Differentiation:]
+ul
+  li #[strong Customer experience]: Millisecond response times vs competitor 
delays
+  li #[strong Operational agility]: Real-time decision making vs batch 
processing delays
+  li #[strong Cost efficiency]: Single platform vs multi-system operational 
overhead
+
+p #[strong Innovation Enablement:]
+ul
+  li #[strong New product capabilities]: Performance characteristics enable 
previously impossible features
+  li #[strong Market expansion]: Consistent performance supports higher-volume 
markets
+  li #[strong Technical differentiation]: Platform capabilities become 
competitive advantages
+
+hr
+br
+
+h2 The Performance Integration Advantage
+br
+p Traditional architectures force performance trade-offs between workload 
types. Fast operations require dedicated systems. Analytical processing needs 
separate infrastructure. Reporting workloads get isolated environments.
+
+p Apache Ignite eliminates these trade-offs through integrated platform 
performance. All workload types achieve their required performance 
characteristics within the same system, using the same data, without 
interference.
+
+p #[strong The principle: Performance consistency enables operational 
simplicity.]
+
+p When all workloads perform predictably within the same platform, you 
eliminate the operational complexity of managing performance trade-offs across 
multiple systems. Your architecture supports business requirements instead of 
constraining them.
+
+p High-velocity applications need performance characteristics they can depend 
on. Integrated platform performance provides both the speed individual 
operations require and the consistency mixed workloads demand.
+
+hr
+br
+|
+p #[em Return next Tuesday for Part 5, that explores how data colocation 
eliminates the network overhead that traditional distributed systems accept as 
inevitable. This transforms distributed processing into local memory operations 
while maintaining the scale and fault tolerance benefits of distributed 
architecture.]
\ No newline at end of file
diff --git a/blog/apache-ignite-3-architecture-part-4.html 
b/blog/apache-ignite-3-architecture-part-4.html
new file mode 100644
index 0000000000..ea79fd7f7f
--- /dev/null
+++ b/blog/apache-ignite-3-architecture-part-4.html
@@ -0,0 +1,878 @@
+<!DOCTYPE html>
+<html lang="en">
+  <head>
+    <meta charset="UTF-8" />
+    <meta name="viewport" content="width=device-width, initial-scale=1.0, 
maximum-scale=1" />
+    <title>Apache Ignite Architecture Series: Part 4 - Integrated Platform 
Performance: Maintaining Speed Under Pressure</title>
+    <link rel="stylesheet" 
href="/js/vendor/hystmodal/hystmodal.min.css?ver=0.9" />
+    <link rel="stylesheet" href="/css/utils.css?ver=0.9" />
+    <link rel="stylesheet" href="/css/site.css?ver=0.9" />
+    <link rel="stylesheet" href="../css/blog.css?ver=0.9" />
+    <link rel="stylesheet" href="/css/media.css?ver=0.9" media="only screen 
and (max-width:1199px)" />
+    <link rel="icon" type="image/png" href="/img/favicon.png" />
+    <!-- Matomo -->
+    <script>
+      var _paq = (window._paq = window._paq || []);
+      /* tracker methods like "setCustomDimension" should be called before 
"trackPageView" */
+      _paq.push(['setDoNotTrack', true]);
+      _paq.push(['disableCookies']);
+      _paq.push(['trackPageView']);
+      _paq.push(['enableLinkTracking']);
+      (function () {
+        var u = 'https://analytics.apache.org/';
+        _paq.push(['setTrackerUrl', u + 'matomo.php']);
+        _paq.push(['setSiteId', '77']);
+        var d = document,
+          g = d.createElement('script'),
+          s = d.getElementsByTagName('script')[0];
+        g.async = true;
+        g.src = u + 'matomo.js';
+        s.parentNode.insertBefore(g, s);
+      })();
+    </script>
+    <!-- End Matomo Code -->
+  </head>
+  <body>
+    <!-- MOBILE MENU START-->
+    <div class="hystmodal" id="jsMenuModal" aria-hidden="true">
+      <div class="hystmodal__wrap">
+        <div class="hystmodal__window mobmenu" role="dialog" aria-modal="true">
+          <button class="hystmodal__close" data-hystclose="">Close</button>
+          <div class="mobmenu__wrap">
+            <a class="mobmenu__logo" href="/"><img src="/img/logo.svg" 
alt="Logo" /></a>
+            <div class="mobmenu__menu">
+              <ul>
+                <li><a href="/docs/latest/">Quick Start</a></li>
+                <li><a href="/resources.html#learning">Learning 
resources</a></li>
+                <li><a href="/resources.html#training">Training and 
Courses</a></li>
+                <li><a href="/faq.html">FAQ</a></li>
+                <li>
+                  <span class="mobmenu__parent"><a href="/use-cases.html">Use 
Cases</a><button class="mobmenu__opener"></button></span>
+                  <ul>
+                    <li><a href="/use-cases/in-memory-cache.html">In-Memory 
Cache</a></li>
+                    <li><a 
href="/use-cases/in-memory-data-grid.html">In-Memory Data Grid</a></li>
+                    <li><a href="/use-cases/in-memory-database.html">In-Memory 
Database</a></li>
+                    <li><a href="/use-cases/key-value-store.html">Key-Value 
Store</a></li>
+                    <li><a 
href="/use-cases/high-performance-computing.html">High Performance 
Computing</a></li>
+                    <li><a 
href="/use-cases/digital-integration-hub.html">Digital Integration Hub</a></li>
+                    <li><a href="/use-cases/spark-acceleration.html">Spark 
Acceleration</a></li>
+                    <li><a href="/use-cases/hadoop-acceleration.html">Hadoop 
Acceleration</a></li>
+                    <li><a href="/use-cases.html">View All</a></li>
+                  </ul>
+                </li>
+                <li>
+                  <span class="mobmenu__parent"><a 
href="/features/">Features</a><button class="mobmenu__opener"></button></span>
+                  <ul>
+                    <li><a href="/arch/multi-tier-storage.html">Multi-Tier 
Storage</a></li>
+                    <li><a href="/arch/native-persistence.html">Native 
Persistence</a></li>
+                    <li><a href="/features/sql.html">Distributed SQL</a></li>
+                    <li><a href="/features/key-value-apis.html">Key-Value 
APIs</a></li>
+                    <li><a href="/features/acid-transactions.html">ACID 
Transactions</a></li>
+                    <li><a href="/features/compute-apis.html">Compute 
APIs</a></li>
+                    <li><a href="/features/service-apis.html">Services</a></li>
+                    <li><a href="/features/machinelearning.html">Machine 
Learning</a></li>
+                    <li><a href="/features/streaming.html">Real-Time Streaming 
APIs</a></li>
+                    <li><a href="/docs/latest/messaging">Messaging</a></li>
+                    <li><a 
href="/docs/latest/key-value-api/continuous-queries">Continuous Queries</a></li>
+                    <li><a href="/features/index.html">View All</a></li>
+                  </ul>
+                </li>
+                <li>
+                  <a href="/community.html">Community</a>
+                  <ul class="isdefault">
+                    <li><a href="/community.html">Project Info</a></li>
+                    <li><a href="/events.html">Events</a></li>
+                  </ul>
+                </li>
+                <li><a href="/use-cases/provenusecases.html">Powered 
by</a></li>
+                <li><a href="/resources.html">Resources</a></li>
+                <li><a href="/blog/">Blog</a></li>
+                <li><a href="/docs/latest/">Docs</a></li>
+              </ul>
+              <a class="button mobmenu__button" href="/download.cgi">Download 
Ignite</a>
+            </div>
+            <!-- //mobmenu__menu-->
+          </div>
+          <!-- //mobmenu__wrap-->
+        </div>
+        <!-- //mobmenu-->
+      </div>
+    </div>
+    <!-- MOBILE MENU END-->
+    <header class="hdr hdr__white jsHdrBase">
+      <div class="jsHdrLine">
+        <div id="promotion-bar">
+          <a
+            
href="https://ignite-summit.org/2025/?utm_medium=website-direct&amp;utm_source=apache_ignite&amp;utm_term=ignite-summit&amp;utm_content=event-hosted&amp;utm_campaign=2023-06-06-ignite-summit-nam";
+            target="_blank"
+            title="Ignite Summit 2025"
+            rel="noopener noreferrer"
+            >Ignite Summit 2025 — Watch on demand &nbsp;<span class="more 
d-none d-lg-block"><img src="/images/promos/arrow-white.svg" /></span
+          ></a>
+        </div>
+        <div class="hdr__wrap flexi">
+          <button class="hdr__burger" data-menumodal="#jsMenuModal"><img 
src="/img/menu.svg" alt="" /></button
+          ><a class="hdr__logo" href="/"><img class="hdr__logoimg 
hdr__logo--white" src="/img/logo-white.svg" alt="" /><img class="hdr__logoimg 
hdr__logo--black" src="/img/logo.svg" alt="" /></a
+          ><a class="button hdr__button" href="/download.cgi">Download 
Ignite</a>
+          <nav class="hdrmenu">
+            <ul class="flexi">
+              <li class="js-hasdrop"><a class="hdrmenu--expanded" href="/" 
data-panel="getStarted">Get Started</a></li>
+              <li class="js-hasdrop"><a class="hdrmenu--expanded" 
href="/features" data-panel="features">Features</a></li>
+              <li class="js-hasdrop"><a class="hdrmenu--expanded" 
href="/community.html" data-panel="community">Community</a></li>
+              <li><a href="/use-cases/provenusecases.html" 
data-panel="">Powered By</a></li>
+              <li class="js-hasdrop"><a class="hdrmenu--expanded" 
href="/resources.html" data-panel="resources">Resources</a></li>
+              <li><a href="///ignite.apache.org/docs/latest/" 
data-panel="">Docs</a></li>
+            </ul>
+          </nav>
+          <div class="dropmenu">
+            <div class="dropmenu__panel" data-menupanel="getStarted">
+              <div class="container dropmenu1__grid">
+                <div class="dropmenu1__buttonwrap">&nbsp;</div>
+                <div class="dropmenu__box dropmenu__box--buttonin">
+                  <a class="dropmenu__redbutton" 
href="https://ignite.apache.org/docs/latest/";> <img 
src="/img/menu/icon-red-rocket.svg" alt="" /><span>Quick Start Guide</span></a>
+                  <ul class="dropmenu__menu">
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/resources.html#learning"><span>Learning resources</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/resources.html#training"><span>Training and Courses</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/faq.html"><span>FAQ</span></a>
+                    </li>
+                  </ul>
+                </div>
+                <div class="dropmenu__box">
+                  <p class="capstext"><a class="dropmenu__capslink" 
href="/use-cases.html">USE CASES</a></p>
+                  <ul class="dropmenu__menu">
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/use-cases/in-memory-cache.html"><img src="/img/menu/icon-folder.svg" 
alt="" /><span>In-Memory Cache</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/use-cases/in-memory-data-grid.html"><img src="/img/menu/icon-folder.svg" 
alt="" /><span>In-Memory Data Grid</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/use-cases/in-memory-database.html"><img src="/img/menu/icon-folder.svg" 
alt="" /><span>In-Memory Database</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/use-cases/key-value-store.html"><img src="/img/menu/icon-folder.svg" 
alt="" /><span>Key-Value Store</span></a>
+                    </li>
+                  </ul>
+                </div>
+                <div class="dropmenu__box no-border">
+                  <ul class="dropmenu__menu">
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/use-cases/high-performance-computing.html"><img 
src="/img/menu/icon-folder.svg" alt="" /><span>High-Performance 
Computing</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/use-cases/digital-integration-hub.html"><img 
src="/img/menu/icon-folder.svg" alt="" /><span>Digital Integration 
Hub</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/use-cases/spark-acceleration.html"><img src="/img/menu/icon-folder.svg" 
alt="" /><span>Spark Acceleration</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/use-cases/hadoop-acceleration.html"><img src="/img/menu/icon-folder.svg" 
alt="" /><span>Hadoop Acceleration</span></a>
+                    </li>
+                  </ul>
+                </div>
+              </div>
+              <!-- /.dropmenu1__grid-->
+              <div class="panelmorelinkwrap panelmorelinkwrap--end 
container"><a class="panellink" href="/use-cases.html">View all</a></div>
+            </div>
+            <!-- /.dropmenu__panel-->
+            <div class="dropmenu__panel" data-menupanel="features">
+              <div class="container dropmenu2__grid">
+                <div class="dropmenu__box">
+                  <div class="capstext">MULTI-TIER STORAGE</div>
+                  <ul class="dropmenu__menu">
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/arch/multi-tier-storage.html"><img src="/img/menu/icon-db.svg" alt="" 
/><span>Multi-Tier Storage</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/arch/native-persistence.html"><img src="/img/menu/icon-db.svg" alt="" 
/><span>Native Persistence</span></a>
+                    </li>
+                  </ul>
+                </div>
+                <div class="dropmenu__box">
+                  <div class="capstext">ESSENTIAL Developer APIs</div>
+                  <ul class="dropmenu__menu">
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/features/sql.html"><img src="/img/menu/icon-cube.svg" alt="" 
/><span>Distributed SQL</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/features/key-value-apis.html"><img src="/img/menu/icon-cube.svg" alt="" 
/><span>Key-Value APIs</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/features/acid-transactions.html"><img src="/img/menu/icon-cube.svg" 
alt="" /><span>ACID Transactions</span></a>
+                    </li>
+                  </ul>
+                </div>
+                <div class="dropmenu__box">
+                  <div class="capstext">High-Performance <br />Computing 
APIs</div>
+                  <ul class="dropmenu__menu">
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/features/compute-apis.html"><img src="/img/menu/icon-cube.svg" alt="" 
/><span>Compute APIs</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/features/service-apis.html"><img src="/img/menu/icon-cube.svg" alt="" 
/><span>Services</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/features/machinelearning.html"><img src="/img/menu/icon-cube.svg" alt="" 
/><span>Machine Learning</span></a>
+                    </li>
+                  </ul>
+                </div>
+                <div class="dropmenu__box">
+                  <div class="capstext">Real-Streaming APIs</div>
+                  <ul class="dropmenu__menu">
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/features/streaming.html"><img src="/img/menu/icon-cube.svg" alt="" 
/><span>Real-Time Streaming APIs</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="https://ignite.apache.org/docs/latest/messaging";><img 
src="/img/menu/icon-cube.svg" alt="" /><span>Messaging</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="https://ignite.apache.org/docs/latest/key-value-api/continuous-queries";><img
 src="/img/menu/icon-cube.svg" alt="" /><span>Continuous Queries</span></a>
+                    </li>
+                  </ul>
+                </div>
+              </div>
+              <!-- /.dropmenu2__grid-->
+              <div class="panelmorelinkwrap"><a class="panellink" 
href="/features/">View all</a></div>
+            </div>
+            <!-- /.dropmenu__panel-2-->
+            <div class="dropmenu__panel" data-menupanel="community">
+              <div class="container dropmenu3__grid">
+                <div class="dropmenu__box">
+                  <div class="capstext"><a class="dropmenu__capslink" 
href="/community.html">Project Info</a></div>
+                  <ul class="dropmenu__menu">
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/community.html#story"><img src="/img/menu/icon-clip.svg" alt="" 
/><span>Apache Ignite Story</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/community.html#community"><img src="/img/menu/icon-comment.svg" alt="" 
/><span>Meet The Community</span></a>
+                    </li>
+                  </ul>
+                </div>
+                <div class="dropmenu__box no-border">
+                  <div class="capstext">&nbsp;</div>
+                  <ul class="dropmenu__menu">
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/community.html#contributing"><img src="/img/menu/icon-puzzle.svg" alt="" 
/><span>Start Contributing</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/community.html#faq"><img src="/img/menu/icon-question.svg" alt="" 
/><span>Ask Questions</span></a>
+                    </li>
+                  </ul>
+                </div>
+                <div class="dropmenu__box">
+                  <div class="capstext"><a class="dropmenu__capslink" 
href="/events.html">Events</a></div>
+                  <ul class="dropmenu__menu">
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/events.html#summit"><img src="/img/menu/icon-calendar.svg" alt="" 
/><span>Apache Ignite Summit</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/events.html#meetups"><img src="/img/menu/icon-calendar.svg" alt="" 
/><span>Meetups</span></a>
+                    </li>
+                  </ul>
+                </div>
+                <div class="dropmenu__box no-border">
+                  <div class="capstext">&nbsp;</div>
+                  <ul class="dropmenu__menu">
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/events.html#upcoming"><img src="/img/menu/icon-calendar.svg" alt="" 
/><span>Upcoming Events</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/events.html#past"><img src="/img/menu/icon-calendar.svg" alt="" 
/><span>Past Events</span></a>
+                    </li>
+                  </ul>
+                </div>
+              </div>
+              <!-- /.dropmenu3__grid-->
+            </div>
+            <!-- /.dropmenu__panel-->
+            <div class="dropmenu__panel" data-menupanel="resources">
+              <div class="container dropmenu1__grid">
+                <div class="dropmenu1__buttonwrap">&nbsp;</div>
+                <div class="dropmenu__box dropmenu__box--buttonin">
+                  <a class="dropmenu__redbutton blog" href="/blog/"><img 
src="/img/menu/icon-blog.svg" alt="" /><span>Blog</span></a>
+                  <ul class="dropmenu__menu">
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/resources.html#technical"><span>Technical resources</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/resources.html#learning"><span>Learning resources</span></a>
+                    </li>
+                  </ul>
+                </div>
+                <div class="dropmenu__box blog">
+                  <ul class="dropmenu__menu">
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/resources.html#training"><span>Training and Courses</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/resources.html#book"><span>Apache Ignite Book</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/resources.html#mail"><span>Mailing Lists, Forums And Discussion 
Archives</span></a>
+                    </li>
+                    <li>
+                      <a class="dropmenu__iconitem" 
href="/faq.html"><span>FAQ</span></a>
+                    </li>
+                  </ul>
+                </div>
+              </div>
+              <!-- /.dropmenu1__grid-->
+            </div>
+            <!-- /.dropmenu__panel-->
+          </div>
+          <!-- /.dropmeu-->
+        </div>
+      </div>
+    </header>
+    <div class="dropmenu__back"></div>
+    <header class="hdrfloat hdr__white jsHdrFloatBase"></header>
+    <div class="container blog">
+      <section class="blog__header post_page__header">
+        <a href="/blog/">← Apache Ignite Blog</a>
+        <h1>Apache Ignite Architecture Series: Part 4 - Integrated Platform 
Performance: Maintaining Speed Under Pressure</h1>
+        <p>
+          December 16, 2025 by <strong>Michael Aglietti. Share in </strong><a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/undefined";>Facebook</a><span>,
 </span
+          ><a href="http://twitter.com/home?status=Apache Ignite Architecture 
Series: Part 4 - Integrated Platform Performance: Maintaining Speed Under 
Pressure%20https://ignite.apache.org/blog/undefined";>Twitter</a>
+        </p>
+      </section>
+      <div class="blog__content">
+        <main class="blog_main">
+          <section class="blog__posts">
+            <article class="post">
+              <div>
+                <p>Traditional systems force a choice: real-time analytics or 
fast transactions. Apache Ignite eliminates this trade-off with integrated 
platform performance that delivers both simultaneously.</p>
+                <!-- end -->
+                <p>
+                  Financial trades execute in microseconds while risk 
analytics run concurrently on the same live data. Compliance reporting 
processes millions of transactions without blocking operational processing. 
This happens through a
+                  unified performance architecture that maintains speed 
characteristics across all workload types.
+                </p>
+                <p><strong>Real-time analytics breakthrough: query live 
transactional data without ETL delays or performance interference.</strong></p>
+                <hr />
+                <br />
+                <h2>Performance Comparison: Traditional vs Integrated</h2>
+                <h3>Traditional Multi-System Performance</h3>
+                <p><strong>Concrete performance degradation in financial 
trading systems:</strong></p>
+                <p><strong>Resource Competition Example</strong> (Financial 
Trading System):</p>
+                <pre><code>// Traditional system: workloads interfere with 
each other
+public class TradingSystemBottlenecks {
+
+    public void processTradeWithInterference() {
+        long tradeStart = System.nanoTime();
+
+        // 1. High-frequency trading (requires <100μs)
+        Trade trade = executeTradeLogic();  // Target: 50μs
+
+        // But system is also running:
+        // - Risk analytics (heavy CPU usage)
+        // - Compliance reporting (heavy I/O)
+        // - Position calculations (memory pressure)
+
+        long actualTime = System.nanoTime() - tradeStart;
+        // Result: 300-2000 microseconds instead of 50 microseconds (6-40x 
degradation)
+    }
+}
+</code></pre>
+                <p><strong>Performance interference causes:</strong></p>
+                <ul>
+                  <li><strong>CPU competition</strong>: Analytics consume CPU 
needed for microsecond trading</li>
+                  <li><strong>Memory competition</strong>: Large queries 
trigger garbage collection during trades</li>
+                  <li><strong>I/O competition</strong>: Batch reports block 
transaction log writes</li>
+                  <li><strong>Network competition</strong>: Cross-system data 
movement affects all operations</li>
+                </ul>
+                <h3>Multi-System Performance Fragmentation</h3>
+                <p>Separating workloads creates different performance 
problems:</p>
+                <pre class="mermaid">flowchart TB
+    subgraph "Separate Systems"
+        Trading[Trading System<br/>50μs trades<br/>BUT: Stale risk data]
+        Analytics[Analytics System<br/>Fast queries<br/>BUT: Delayed trade 
data]
+        Reporting[Reporting System<br/>Complete data<br/>BUT: 10-30min lag]
+    end
+
+    subgraph "Data Movement Overhead"
+        Sync1[Trading → Analytics<br/>2-5ms synchronization]
+        Sync2[Analytics → Reporting<br/>Batch ETL delays]
+        Sync3[Cross-system validation<br/>10-50ms coordination]
+    end
+
+    Trading -->|Real-time feed| Sync1
+    Sync1 --> Analytics
+    Analytics -->|Hourly batch| Sync2
+    Sync2 --> Reporting
+    Reporting -->|Compliance check| Sync3
+    Sync3 --> Trading
+</pre>
+                <p><strong>Performance Trade-off Reality:</strong></p>
+                <ul>
+                  <li>Fast trading with stale risk calculations (compliance 
risk)</li>
+                  <li>Fresh analytics with trading delays (performance 
risk)</li>
+                  <li>Complete reporting with operational lag (business 
risk)</li>
+                </ul>
+                <hr />
+                <br />
+                <h2>Apache Ignite Integrated Performance Architecture</h2>
+                <h3>Before/After Performance Transformation</h3>
+                <p><strong>Traditional: Choose between fast transactions OR 
real-time analytics</strong></p>
+                <ul>
+                  <li>Trading: 50 microseconds per trade (when analytics are 
OFF)</li>
+                  <li>Analytics: 2-5 second query response (when trading is 
PAUSED)</li>
+                  <li>Reports: 10-30 minute ETL delay before data 
availability</li>
+                </ul>
+                <p><strong>Integrated Platform: Fast transactions AND 
real-time analytics simultaneously</strong></p>
+                <ul>
+                  <li>Trading: 50 microseconds per trade (while analytics run 
concurrently)</li>
+                  <li>Analytics: 100-500 milliseconds query response (on live 
trading data)</li>
+                  <li>Reports: Real-time query results (no ETL delays)</li>
+                </ul>
+                <h3>Storage Engine Performance Strategy</h3>
+                <p>Apache Ignite provides two storage engines that solve 
different performance challenges:</p>
+                <p>
+                  <strong>Memory-Only Storage (aimem)</strong>: Optimized for 
latency-critical workloads requiring maximum speed. High-frequency trading 
operations, real-time analytics calculations, and session data management 
benefit from
+                  pure memory operations without persistence overhead. 
Performance characteristics focus on microsecond response times.
+                </p>
+                <p>
+                  <strong>Memory-First Persistence (aipersist)</strong>: 
Combines memory-speed access with durability guarantees through asynchronous 
persistence. Financial transactions, audit logs, and regulatory data maintain 
ACID
+                  properties while achieving memory-speed performance. 
Background checkpointing provides durability without blocking operations.
+                </p>
+                <p><strong>Storage Engine Benefits:</strong></p>
+                <ul>
+                  <li><strong>Performance optimization</strong>: Each engine 
optimizes for specific workload characteristics</li>
+                  <li><strong>Operational flexibility</strong>: Choose 
durability vs speed based on data requirements</li>
+                  <li><strong>Resource efficiency</strong>: Avoid persistence 
overhead when durability isn't required</li>
+                  <li><strong>Mixed workload support</strong>: Different 
tables use different engines within the same cluster</li>
+                </ul>
+                <h3>Memory Management for Consistent Performance</h3>
+                <p>Page-based memory management eliminates the serialization 
overhead and garbage collection interference that affects performance 
predictability in traditional systems:</p>
+                <p><strong>Performance Architecture Benefits:</strong></p>
+                <ul>
+                  <li><strong>Predictable access times</strong>: Direct memory 
operations without GC interference</li>
+                  <li><strong>Zero serialization overhead</strong>: Binary 
operations on native memory layouts</li>
+                  <li><strong>Cache efficiency</strong>: Page-based data 
organization optimizes CPU cache usage</li>
+                  <li><strong>Linear memory scaling</strong>: Performance 
grows directly with available RAM</li>
+                </ul>
+                <p>
+                  <strong>The Integration Advantage</strong>: Instead of 
managing memory efficiency at the application level, the platform handles 
memory optimization automatically while maintaining the simple APIs your 
business logic
+                  requires.
+                </p>
+                <h3>Asynchronous API Design for Concurrent Processing</h3>
+                <p>High-velocity applications require non-blocking operations 
to maximize resource utilization:</p>
+                <pre><code>// Concurrent processing without blocking
+public class ConcurrentTradingProcessor {
+
+    public CompletableFuture&lt;TradingResult&gt 
processConcurrentWorkloads(IgniteClient client) {
+        // Execute multiple operations concurrently
+        CompletableFuture&lt;Trade&gt tradeExecution = 
client.transactions().runInTransactionAsync(tx ->
+            client.sql().executeAsync(tx, "INSERT INTO trades VALUES (?, ?, 
?)", tradeId, amount, timestamp)
+        );
+
+        CompletableFuture&lt;RiskMetrics&gt riskCalculation = 
client.compute().executeAsync(
+            JobTarget.colocated("trades", tradeId),
+            RiskCalculationJob.class, tradeId
+        );
+
+        CompletableFuture&lt;ComplianceResult&gt complianceCheck = 
client.compute().executeAsync(
+            JobTarget.colocated("trades", tradeId),
+            ComplianceValidationJob.class, tradeId
+        );
+
+        // Combine results when all complete
+        return CompletableFuture.allOf(tradeExecution, riskCalculation, 
complianceCheck)
+            .thenApply(v -> new TradingResult(
+                tradeExecution.join(),
+                riskCalculation.join(),
+                complianceCheck.join()
+            ));
+    }
+}
+</code></pre>
+                <p><strong>Concurrency Benefits:</strong></p>
+                <ul>
+                  <li><strong>Resource utilization</strong>: CPU cores stay 
busy while I/O completes</li>
+                  <li><strong>Throughput scaling</strong>: Process multiple 
operations per thread</li>
+                  <li><strong>Latency hiding</strong>: Overlapping operations 
reduce total processing time</li>
+                </ul>
+                <hr />
+                <br />
+                <h2>Performance Under Real-World Load Conditions</h2>
+                <h3>Performance Under Mixed Workloads</h3>
+                <p><strong>High-Frequency Trading Performance:</strong></p>
+                <p>
+                  Trade processing achieves sub-microsecond operations through 
memory-resident data access. Portfolio validation, risk calculations, and trade 
execution happen locally without network calls. Performance scales linearly with
+                  available CPU cores while maintaining consistent latency.
+                </p>
+                <p><strong>Concurrent Analytics Performance:</strong></p>
+                <p>
+                  Risk analytics run simultaneously with live trading without 
mutual interference. Portfolio analysis queries process the same data that 
trading operations update, but analytics access consistent snapshots without 
blocking
+                  trade execution. Complex SQL aggregations complete while 
high-frequency trading continues at full speed.
+                </p>
+                <p>
+                  <strong>The Performance Integration</strong>: Traditional 
systems force trade-offs between transaction speed and analytical capability. 
Integrated platform performance eliminates these constraints by supporting both
+                  workload types within the same optimized architecture.
+                </p>
+                <h3>Unified Access Performance Characteristics</h3>
+                <p><strong>Here's how the same data maintains optimal 
performance across different access patterns:</strong></p>
+                <pre><code>// Trading data accessed through optimal API for 
each use case
+Table tradesTable = client.tables().table("trades");
+// 1. Key-value access for high-frequency lookups
+Trade trade = tradesTable.keyValueView()
+    .get(tx, Tuple.create().set("trade_id", tradeId));     // <1 ms lookup
+// 2. SQL access for complex risk analytics
+ResultSet&lt;SqlRow&gt; riskAnalysis = client.sql().execute(tx,
+    "SELECT account_id, SUM(quantity * price) as exposure " +
+    "FROM trades WHERE trade_date = CURRENT_DATE " +
+    "GROUP BY account_id HAVING exposure > 1000000");      // Parallel 
execution
+// 3. Record access for type-safe transaction processing
+TradeRecord record = tradesTable.recordView()
+    .get(tx, new TradeRecord(tradeId));                     // Type-safe 
operations
+</code></pre>
+                <p><strong>Performance Optimization per Access 
Pattern:</strong></p>
+                <ul>
+                  <li><strong>Key-value operations</strong>: Direct memory 
access with microsecond response times</li>
+                  <li><strong>SQL operations</strong>: Query optimization with 
parallel execution and colocation</li>
+                  <li><strong>Record operations</strong>: Type-safe processing 
without serialization overhead</li>
+                  <li><strong>All operations</strong>: Share same 
memory-resident data and transaction guarantees</li>
+                </ul>
+                <p>
+                  <strong>The unified performance advantage</strong>: Each 
access method optimizes for its specific use case while operating against the 
same high-performance data store. No performance compromises, no data movement
+                  overhead.
+                </p>
+                <h3>Compliance Reporting Performance</h3>
+                <p><strong>Regulatory Reporting Without Operational 
Impact:</strong></p>
+                <p>
+                  Compliance reporting processes millions of transactions for 
regulatory analysis while live trading continues at full speed. Complex 
aggregation queries scan large datasets to identify position limit violations, 
unusual
+                  trading patterns, and risk exposure calculations. These 
operations complete without blocking operational processing through concurrent 
access control.
+                </p>
+                <p><strong>Performance Characteristics:</strong></p>
+                <ul>
+                  <li><strong>High data scan rate</strong>: Reports process 
complete trading datasets efficiently</li>
+                  <li><strong>Minimal operational impact</strong>: Compliance 
queries run concurrently with live trading</li>
+                  <li><strong>Memory efficient processing</strong>: 
Large-scale aggregations use streaming patterns</li>
+                  <li><strong>Transactional consistency</strong>: Reports 
reflect exact point-in-time data state</li>
+                </ul>
+                <h3>Real-Time Analytics Without ETL</h3>
+                <p><strong>Live transactional data analytics without 
traditional ETL delays:</strong></p>
+                <pre><code>// Analytics query running against live trading data
+// Read-only transaction for snapshot isolation
+Transaction readOnlyTx = client.transactions().begin(new 
TransactionOptions().readOnly(true));
+ResultSet&lt;SqlRow&gt; liveRiskAnalysis = client.sql().execute(readOnlyTx, """
+    SELECT
+        account_id,
+        symbol,
+        SUM(quantity * price) as current_exposure,
+        COUNT(*) as trade_count,
+        MAX(timestamp) as last_trade
+    FROM trades
+    WHERE trade_date = CURRENT_DATE
+      AND status = 'EXECUTED'
+    GROUP BY account_id, symbol
+    HAVING current_exposure > 1000000
+    ORDER BY current_exposure DESC
+""");
+// This query runs concurrently with:
+// - Live trading operations inserting new trades
+// - Risk systems updating positions
+// - Settlement processes modifying trade status
+// - All without blocking any operational processing
+</code></pre>
+                <p><strong>The Real-Time Analytics Breakthrough:</strong></p>
+                <ul>
+                  <li><strong>No ETL delays</strong>: Analytics queries run 
directly against operational data</li>
+                  <li><strong>No data staleness</strong>: See trades and 
positions as they happen, not hours later</li>
+                  <li><strong>No system separation</strong>: Same data serves 
both operations and analytics</li>
+                  <li><strong>No performance interference</strong>: Concurrent 
access prevents analytics from blocking operations</li>
+                </ul>
+                <p><strong>Traditional ETL Problem Solved:</strong></p>
+                <pre><code>// Traditional: Wait for ETL, work with stale data
+// 1. Trading system writes trades
+// 2. ETL process extracts (30 min delay)
+// 3. Analytics warehouse loads (60 min delay)
+// 4. Dashboard shows 90-minute-old data
+// Ignite 3: Instant analytics on live data
+// 1. Trading system writes trades
+// 2. Analytics queries see data immediately
+// 3. Dashboard shows real-time positions
+</code></pre>
+                <p><strong>The integrated approach</strong>: The operational 
database becomes the analytics database when designed for both workloads. No 
more choosing between fresh data and analytical power.</p>
+                <h3>Intelligent Flow Control Under Extreme Load</h3>
+                <p>
+                  <strong>The system pressure challenge</strong>: During 
traffic spikes (market volatility, Black Friday, viral events), traditional 
systems either drop connections or crash. Apache Ignite responds intelligently 
with
+                  automatic backpressure that maintains system stability while 
preserving data integrity.
+                </p>
+                <pre><code>// Intelligent backpressure prevents system 
collapse during traffic spikes
+DataStreamerOptions options = DataStreamerOptions.builder()
+    .pageSize(10_000)                    // Batch size control
+    .perPartitionParallelOperations(4)   // Concurrency limits per partition
+    .autoFlushInterval(1000)             // Memory pressure relief (1 second)
+    .retryLimit(32)                      // Resilience under pressure
+    .build();
+// Publisher provides intelligent flow control - automatically throttles when 
system pressure detected
+try (var publisher = new 
SubmissionPublisherDataStreamerItem&lt;TradeRecord&gt()) {
+    CompletableFuture&lt;Void&gt streamerFut = 
tradesTable.recordView().streamData(publisher, options);
+
+    // System automatically applies backpressure when memory pressure or 
partition limits reached
+    // Instead of dropping connections, Ignite 3 intelligently throttles input 
rates
+    publisher.submit(DataStreamerItem.of(tradeRecord));
+
+    streamerFut.join(); // Completes when all data processed with backpressure 
applied
+}
+</code></pre>
+                <p><strong>Backpressure vs Traditional Approaches:</strong></p>
+                <pre class="mermaid">
+flowchart LR
+    subgraph "System Under Load"
+        Events1[High Traffic Spike 50,000 events/sec]
+        DB1[(Traditional Database)]
+        Crash1[System Overload 503 Service Unavailable]
+        Loss1[Data Lost Revenue Impact Customer Complaints]
+
+        Events1 -->|Overwhelms| DB1
+        DB1 -->|Cannot Handle Load| Crash1
+        Crash1 --> Loss1
+    end
+</pre
+                >
+                <pre class="mermaid">
+flowchart LR
+    subgraph "Ignite 3 Backpressure"
+        Events2[High Traffic Spike 50,000 events/sec]
+        Ignite[Apache Ignite Backpressure Control]
+        Throttle[Intelligent Throttling Flow Control Active]
+        Success[System Stable Data Preserved 99.9% Uptime]
+
+        Events2 -->|High Load Detected| Ignite
+        Ignite -->|Applies Backpressure| Throttle
+        Throttle -->|Maintains Stability| Success
+    end
+</pre
+                >
+                <p><strong>Traditional Database</strong>: "503 Service 
Unavailable" → Connections dropped, data lost</p>
+                <br />
+                <p><strong>Apache Ignite</strong>: "Intelligent throttling" → 
System stays up, data preserved</p>
+                <p><strong>Real-world scenarios where backpressure saves 
systems:</strong></p>
+                <ul>
+                  <li><strong>Market volatility</strong>: 10x normal trading 
volume handled gracefully without transaction loss</li>
+                  <li><strong>IoT sensor bursts</strong>: 50M device readings 
processed without memory exhaustion</li>
+                  <li><strong>E-commerce spikes</strong>: Black Friday traffic 
managed without dropped orders</li>
+                  <li><strong>Data migration</strong>: 100TB+ datasets 
streamed without overwhelming target systems</li>
+                </ul>
+                <p><strong>The wow moment</strong>: While competitors' systems 
crash during peak demand, yours maintains 99.9% uptime through intelligent flow 
control that automatically adapts to system pressure.</p>
+                <hr />
+                <br />
+                <h2>Performance Optimization Strategies</h2>
+                <h3>Workload-Specific Optimization</h3>
+                <p><strong>Trading Workload Optimization:</strong></p>
+                <p>
+                  High-frequency trading tables use the volatile memory engine 
(aimem) for maximum speed. Tables configure colocation by account ID to ensure 
related trades process on the same nodes. Distribution zones optimize partition
+                  count and replica settings for trading-specific access 
patterns.
+                </p>
+                <p><strong>Analytics Workload Optimization:</strong></p>
+                <p>
+                  Analytical processing uses the persistent memory engine 
(aipersist) for durability with memory-speed access. Market data tables 
colocate by symbol to optimize time-series queries. Higher partition counts 
distribute
+                  analytical workloads across more nodes for better 
parallelization.
+                </p>
+                <p><strong>Configuration Benefits:</strong></p>
+                <ul>
+                  <li><strong>Workload isolation</strong>: Different storage 
engines prevent interference between workload types</li>
+                  <li><strong>Access optimization</strong>: Colocation 
strategies minimize network overhead for common query patterns</li>
+                  <li><strong>Resource utilization</strong>: Optimized 
partition counts maximize hardware utilization</li>
+                  <li><strong>Performance predictability</strong>: 
Configuration choices align with specific performance requirements</li>
+                </ul>
+                <h3>Performance Monitoring and Validation</h3>
+                <p><strong>Continuous Performance Validation:</strong></p>
+                <p>
+                  Integrated performance monitoring tracks latency histograms 
and throughput gauges across all workload types. The system measures 
interference patterns between trading, analytics, and reporting operations to 
ensure
+                  performance isolation. Automated validation confirms that 
trading latency remains below microsecond thresholds while analytical queries 
maintain their target response times.
+                </p>
+                <p><strong>Performance Validation Results:</strong></p>
+                <ul>
+                  <li><strong>Trading performance</strong>: Sub-microsecond 
99.9th percentile latency under mixed loads</li>
+                  <li><strong>Analytics performance</strong>: Consistent query 
response times regardless of trading volume</li>
+                  <li><strong>Interference detection</strong>: Less than 5% 
mutual performance impact between workload types</li>
+                  <li><strong>Capacity planning</strong>: Predictable scaling 
characteristics enable accurate resource allocation</li>
+                </ul>
+                <hr />
+                <br />
+                <h2>Business Impact of Consistent Performance</h2>
+                <h3>Risk Reduction Through Performance Predictability</h3>
+                <p><strong>Financial Risk Mitigation:</strong></p>
+                <ul>
+                  <li><strong>Trading execution</strong>: Consistent 
low-latency execution prevents slippage</li>
+                  <li><strong>Risk calculations</strong>: Real-time risk 
assessment prevents overexposure</li>
+                  <li><strong>Compliance monitoring</strong>: Immediate 
violation detection prevents penalties</li>
+                </ul>
+                <p><strong>Operational Risk Mitigation:</strong></p>
+                <ul>
+                  <li><strong>System capacity</strong>: Predictable 
performance enables accurate capacity planning</li>
+                  <li><strong>SLA compliance</strong>: Consistent performance 
characteristics enable SLA guarantees</li>
+                  <li><strong>Incident reduction</strong>: Performance 
predictability reduces operational incidents</li>
+                </ul>
+                <h3>Revenue Impact of Performance Consistency</h3>
+                <p><strong>High-Frequency Trading Firm Benefits:</strong></p>
+                <ul>
+                  <li><strong>Execution advantage</strong>: Microsecond 
latency improvements translate to competitive advantage</li>
+                  <li><strong>Risk management</strong>: Real-time risk 
assessment prevents significant financial exposure</li>
+                  <li><strong>Operational efficiency</strong>: Consistent 
performance reduces manual intervention needs</li>
+                </ul>
+                <p><strong>E-commerce Platform Benefits:</strong></p>
+                <ul>
+                  <li><strong>Response time consistency</strong>: Low-latency 
checkout processes improve conversion rates</li>
+                  <li><strong>Analytics availability</strong>: Real-time 
insights enable rapid revenue optimization</li>
+                  <li><strong>System reliability</strong>: High availability 
during peak load prevents revenue loss</li>
+                </ul>
+                <h3>Competitive Advantage Through Integration</h3>
+                <p><strong>Market Differentiation:</strong></p>
+                <ul>
+                  <li><strong>Customer experience</strong>: Millisecond 
response times vs competitor delays</li>
+                  <li><strong>Operational agility</strong>: Real-time decision 
making vs batch processing delays</li>
+                  <li><strong>Cost efficiency</strong>: Single platform vs 
multi-system operational overhead</li>
+                </ul>
+                <p><strong>Innovation Enablement:</strong></p>
+                <ul>
+                  <li><strong>New product capabilities</strong>: Performance 
characteristics enable previously impossible features</li>
+                  <li><strong>Market expansion</strong>: Consistent 
performance supports higher-volume markets</li>
+                  <li><strong>Technical differentiation</strong>: Platform 
capabilities become competitive advantages</li>
+                </ul>
+                <hr />
+                <br />
+                <h2>The Performance Integration Advantage</h2>
+                <br />
+                <p>
+                  Traditional architectures force performance trade-offs 
between workload types. Fast operations require dedicated systems. Analytical 
processing needs separate infrastructure. Reporting workloads get isolated 
environments.
+                </p>
+                <p>
+                  Apache Ignite eliminates these trade-offs through integrated 
platform performance. All workload types achieve their required performance 
characteristics within the same system, using the same data, without 
interference.
+                </p>
+                <p><strong>The principle: Performance consistency enables 
operational simplicity.</strong></p>
+                <p>
+                  When all workloads perform predictably within the same 
platform, you eliminate the operational complexity of managing performance 
trade-offs across multiple systems. Your architecture supports business 
requirements instead
+                  of constraining them.
+                </p>
+                <p>High-velocity applications need performance characteristics 
they can depend on. Integrated platform performance provides both the speed 
individual operations require and the consistency mixed workloads demand.</p>
+                <hr />
+                <br />
+                <p>
+                  <em
+                    >Return next Tuesday for Part 5, that explores how data 
colocation eliminates the network overhead that traditional distributed systems 
accept as inevitable. This transforms distributed processing into local memory
+                    operations while maintaining the scale and fault tolerance 
benefits of distributed architecture.</em
+                  >
+                </p>
+              </div>
+            </article>
+            <section class="blog__footer">
+              <ul class="pagination post_page">
+                <li><a href="/blog/apache">apache</a></li>
+                <li><a href="/blog/ignite">ignite</a></li>
+              </ul>
+            </section>
+          </section>
+        </main>
+        <aside class="blog__sidebar">
+          <ul>
+            <li><a href="/blog/apache">apache</a></li>
+            <li><a href="/blog/ignite">ignite</a></li>
+            <li><a href="/blog/release">release</a></li>
+            <li><a href="/blog/database">database</a></li>
+            <li><a href="/blog/in">in</a></li>
+            <li><a href="/blog/memory">memory</a></li>
+            <li><a href="/blog/open">open</a></li>
+            <li><a href="/blog/source">source</a></li>
+            <li><a href="/blog/.NET">.NET</a></li>
+            <li><a href="/blog/security">security</a></li>
+            <li><a href="/blog/Intel">Intel</a></li>
+            <li><a href="/blog/CET">CET</a></li>
+            <li><a href="/blog/linq">linq</a></li>
+            <li><a href="/blog/SQL">SQL</a></li>
+            <li><a href="/blog/performance">performance</a></li>
+            <li><a href="/blog/csharp">csharp</a></li>
+            <li><a href="/blog/in-memory">in-memory</a></li>
+            <li><a href="/blog/open-source">open-source</a></li>
+            <li><a href="/blog/log4j2">log4j2</a></li>
+            <li><a href="/blog/bigdata">bigdata</a></li>
+            <li><a href="/blog/computing">computing</a></li>
+            <li><a href="/blog/two">two</a></li>
+            <li><a href="/blog/learning">learning</a></li>
+            <li><a href="/blog/machine">machine</a></li>
+            <li><a href="/blog/spark">spark</a></li>
+            <li><a href="/blog/sql">sql</a></li>
+            <li><a href="/blog/data">data</a></li>
+            <li><a href="/blog/fast">fast</a></li>
+            <li><a href="/blog/nodal">nodal</a></li>
+            <li><a href="/blog/meltdown">meltdown</a></li>
+            <li><a href="/blog/spectre">spectre</a></li>
+            <li><a href="/blog/key-value">key-value</a></li>
+            <li><a href="/blog/store">store</a></li>
+            <li><a href="/blog/meetup">meetup</a></li>
+            <li><a href="/blog/biodata">biodata</a></li>
+            <li><a href="/blog/rdbms">rdbms</a></li>
+            <li><a href="/blog/grid">grid</a></li>
+            <li><a href="/blog/imdb">imdb</a></li>
+          </ul>
+        </aside>
+      </div>
+    </div>
+    <footer class="footer">
+      <div class="container footer__top">
+        <section class="footer1">
+          <a class="footer__title" href="/features/">Features</a>
+          <ul class="footer__menu">
+            <li><a href="/arch/multi-tier-storage.html">Multi-Tier 
Storage</a></li>
+            <li><a href="/arch/native-persistence.html">Native 
Persistence</a></li>
+            <li><a href="/features/sql.html">Distributed SQL</a></li>
+            <li><a href="/features/acid-transactions.html">ACID 
Transactions</a></li>
+            <li><a href="/features/key-value-apis.html">Key Value APIs</a></li>
+            <li><a href="/features/compute-apis.html">Compute APIs</a></li>
+            <li><a href="/features/machinelearning.html">Machine 
Learning</a></li>
+            <li><a href="/features/service-apis.html">Services</a></li>
+            <li><a href="/features/streaming.html">Real-Streaming APIs</a></li>
+            <li><a 
href="https://ignite.apache.org/docs/latest/key-value-api/continuous-queries";>Continuous
 Queries</a></li>
+            <li><a 
href="https://ignite.apache.org/docs/latest/messaging";>Messaging</a></li>
+          </ul>
+        </section>
+        <section class="footer2">
+          <a class="footer__title" href="/use-cases/">Use Cases</a>
+          <ul class="footer__menu">
+            <li><a href="/use-cases/in-memory-cache.html">In-Memory 
Cache</a></li>
+            <li><a href="/use-cases/in-memory-data-grid.html">In-Memory Data 
Grid</a></li>
+            <li><a href="/use-cases/in-memory-database.html">In-Memory 
Database</a></li>
+            <li><a 
href="/use-cases/high-performance-computing.html">High-Performance 
Computing</a></li>
+            <li><a href="/use-cases/digital-integration-hub.html">Digital 
Integration Hub</a></li>
+            <li><a href="/use-cases/key-value-store.html">Key-Value 
Store</a></li>
+            <li><a href="/use-cases/spark-acceleration.html">Apache Spark 
Acceleration</a></li>
+            <li><a href="/use-cases/hadoop-acceleration.html">Apache Hadoop 
Acceleration</a></li>
+          </ul>
+        </section>
+        <section class="footer3"><a class="footer__title" 
href="/our-community.html">Community</a><a class="footer__title" 
href="/resources.html">Resources</a><a class="footer__title" 
href="/events.html">Events</a></section>
+        <section class="footer4">
+          <div class="footer4__item">Join Our <a 
href="mailto:[email protected]";>Dev Mailing List</a></div>
+          <div class="footer4__item pt-2">Or write your question</div>
+          <div class="footer4__item pt-1">[email protected]</div>
+          <div class="footer4__item pt-5">Follow Us:</div>
+          <div class="footer4__socwrap flexi pt-2">
+            <a class="footer4__soc" href="https://github.com/apache/ignite"; 
target="_blank"><img src="/img/icon-github.svg" alt="" /></a
+            ><a class="footer4__soc" 
href="https://www.linkedin.com/showcase/apache-ignite/"; target="_blank"><img 
src="/img/icon-linkedin.svg" alt="" /></a
+            ><a class="footer4__soc" href="https://twitter.com/apacheignite"; 
target="_blank"><img src="/img/icon-twitter.svg" alt="" /></a
+            ><a class="footer4__soc" 
href="https://www.meetup.com/Apache-Ignite-Virtual-Meetup/"; 
target="_blank"><img src="/img/icon-meetup-black.png" alt="" /></a>
+          </div>
+          <a class="footer4__button button" 
href="https://ignite.apache.org/docs/latest/index";>Start Using Apache Ignite 
</a>
+        </section>
+      </div>
+      <div class="container footer__bot">
+        <p>© 2015 - 2024 <a href="http://www.apache.org/";>The Apache Software 
Foundation.</a></p>
+        <p class="pt-1x">Apache, Apache Ignite, the Apache feather and the 
Apache Ignite logo are either registered trademarks or trademarks of The Apache 
Software Foundation</p>
+        <p class="pt-1x"><a 
href="http://apache.org/foundation/policies/privacy.html";>Privacy Policy</a></p>
+      </div>
+    </footer>
+    <a class="scrollTop" href="#"
+      ><svg class="feather feather-chevron-up" 
xmlns="http://www.w3.org/2000/svg"; width="24" height="24" viewbox="0 0 24 24" 
fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" 
stroke-linejoin="round">
+        <polyline points="18 15 12 9 6 15"></polyline></svg
+    ></a>
+    <script src="/js/vendor/hystmodal/hystmodal.min.js"></script>
+    <script src="/js/vendor/smoothscroll.js"></script>
+    <script src="/js/vendor/mermaid/mermaid.min.js"></script>
+    <script src="/js/main.js?ver=0.9"></script>
+  </body>
+</html>
diff --git a/blog/apache/index.html b/blog/apache/index.html
index c3dc531734..8039bb6d3b 100644
--- a/blog/apache/index.html
+++ b/blog/apache/index.html
@@ -341,6 +341,22 @@
       <div class="blog__content">
         <main class="blog_main">
           <section class="blog__posts">
+            <article class="post">
+              <div class="post__header">
+                <h2><a 
href="/blog/apache-ignite-3-architecture-part-4.html">Apache Ignite 
Architecture Series: Part 4 - Integrated Platform Performance: Maintaining 
Speed Under Pressure</a></h2>
+                <div>
+                  December 16, 2025 by Michael Aglietti. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/apache-ignite-3-architecture-part-4.html";>Facebook</a><span>,
 </span
+                  ><a
+                    href="http://twitter.com/home?status=Apache Ignite 
Architecture Series: Part 4 - Integrated Platform Performance: Maintaining 
Speed Under 
Pressure%20https://ignite.apache.org/blog/apache-ignite-3-architecture-part-4.html";
+                    >Twitter</a
+                  >
+                </div>
+              </div>
+              <div class="post__content">
+                <p>Traditional systems force a choice: real-time analytics or 
fast transactions. Apache Ignite eliminates this trade-off with integrated 
platform performance that delivers both simultaneously.</p>
+              </div>
+              <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-3-architecture-part-4.html">↓ Read all</a></div>
+            </article>
             <article class="post">
               <div class="post__header">
                 <h2><a 
href="/blog/apache-ignite-3-client-connections-handling.html">How many client 
connections can Apache Ignite 3 handle?</a></h2>
diff --git a/blog/ignite/index.html b/blog/ignite/index.html
index 77011acf46..2ef5035245 100644
--- a/blog/ignite/index.html
+++ b/blog/ignite/index.html
@@ -341,6 +341,22 @@
       <div class="blog__content">
         <main class="blog_main">
           <section class="blog__posts">
+            <article class="post">
+              <div class="post__header">
+                <h2><a 
href="/blog/apache-ignite-3-architecture-part-4.html">Apache Ignite 
Architecture Series: Part 4 - Integrated Platform Performance: Maintaining 
Speed Under Pressure</a></h2>
+                <div>
+                  December 16, 2025 by Michael Aglietti. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/apache-ignite-3-architecture-part-4.html";>Facebook</a><span>,
 </span
+                  ><a
+                    href="http://twitter.com/home?status=Apache Ignite 
Architecture Series: Part 4 - Integrated Platform Performance: Maintaining 
Speed Under 
Pressure%20https://ignite.apache.org/blog/apache-ignite-3-architecture-part-4.html";
+                    >Twitter</a
+                  >
+                </div>
+              </div>
+              <div class="post__content">
+                <p>Traditional systems force a choice: real-time analytics or 
fast transactions. Apache Ignite eliminates this trade-off with integrated 
platform performance that delivers both simultaneously.</p>
+              </div>
+              <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-3-architecture-part-4.html">↓ Read all</a></div>
+            </article>
             <article class="post">
               <div class="post__header">
                 <h2><a 
href="/blog/apache-ignite-3-client-connections-handling.html">How many client 
connections can Apache Ignite 3 handle?</a></h2>
diff --git a/blog/index.html b/blog/index.html
index 38eedb25fe..5f720d7cae 100644
--- a/blog/index.html
+++ b/blog/index.html
@@ -352,6 +352,22 @@
               <div class="post__content"><p>Apache Ignite 3 manages client 
connections so efficiently that the scaling limits common in database-style 
systems simply aren’t a factor.</p></div>
               <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-3-client-connections-handling.html">↓ Read 
all</a></div>
             </article>
+            <article class="post">
+              <div class="post__header">
+                <h2><a 
href="/blog/apache-ignite-3-architecture-part-4.html">Apache Ignite 
Architecture Series: Part 4 - Integrated Platform Performance: Maintaining 
Speed Under Pressure</a></h2>
+                <div>
+                  December 16, 2025 by Michael Aglietti. Share in <a 
href="http://www.facebook.com/sharer.php?u=https://ignite.apache.org/blog/apache-ignite-3-architecture-part-4.html";>Facebook</a><span>,
 </span
+                  ><a
+                    href="http://twitter.com/home?status=Apache Ignite 
Architecture Series: Part 4 - Integrated Platform Performance: Maintaining 
Speed Under 
Pressure%20https://ignite.apache.org/blog/apache-ignite-3-architecture-part-4.html";
+                    >Twitter</a
+                  >
+                </div>
+              </div>
+              <div class="post__content">
+                <p>Traditional systems force a choice: real-time analytics or 
fast transactions. Apache Ignite eliminates this trade-off with integrated 
platform performance that delivers both simultaneously.</p>
+              </div>
+              <div class="post__footer"><a class="more" 
href="/blog/apache-ignite-3-architecture-part-4.html">↓ Read all</a></div>
+            </article>
             <article class="post">
               <div class="post__header">
                 <h2><a 
href="/blog/apache-ignite-3-architecture-part-3.html">Apache Ignite 
Architecture Series: Part 3 - Schema Evolution Under Operational Pressure: When 
Downtime Isn't an Option</a></h2>

Reply via email to