michael-s-molina commented on code in PR #36529:
URL: https://github.com/apache/superset/pull/36529#discussion_r2619526999


##########
superset/sql/execution/executor.py:
##########
@@ -0,0 +1,1080 @@
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements.  See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership.  The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License.  You may obtain a copy of the License at
+#
+#   http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing,
+# software distributed under the License is distributed on an
+# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+# KIND, either express or implied.  See the License for the
+# specific language governing permissions and limitations
+# under the License.
+
+"""
+SQL Executor implementation for Database.execute() and execute_async().
+
+This module provides the SQLExecutor class that implements the query execution
+methods defined in superset_core.api.models.Database.
+
+Implementation Features
+-----------------------
+
+Query Preparation (applies to both sync and async):
+- Jinja2 template rendering (via template_params in QueryOptions)
+- SQL mutation via SQL_QUERY_MUTATOR config hook
+- DML permission checking (requires database.allow_dml=True for DML)
+- Disallowed functions checking via DISALLOWED_SQL_FUNCTIONS config
+- Row-level security (RLS) via AST transformation (always applied)
+- Result limit application via SQL_MAX_ROW config
+- Catalog/schema resolution and validation
+
+Synchronous Execution (execute):
+- Multi-statement SQL parsing and execution
+- Progress tracking via Query model
+- Result caching via cache_manager.data_cache
+- Query logging via QUERY_LOGGER config hook
+- Timeout protection via SQLLAB_TIMEOUT config
+- Dry run mode (returns transformed SQL without execution)
+
+Asynchronous Execution (execute_async):
+- Celery task submission for background execution
+- Security validation before submission
+- Query model creation with PENDING status
+- Result caching check (returns cached if available)
+- Background execution with timeout via SQLLAB_ASYNC_TIME_LIMIT_SEC
+- Results stored in results backend for retrieval
+- Handle-based progress tracking and cancellation
+
+See Database.execute() and Database.execute_async() docstrings in
+superset_core.api.models for the public API contract.
+"""
+
+from __future__ import annotations
+
+import logging
+import time
+from datetime import datetime
+from typing import Any, TYPE_CHECKING
+
+from flask import current_app as app, g, has_app_context
+
+from superset import db
+from superset.errors import ErrorLevel, SupersetError, SupersetErrorType
+from superset.exceptions import (
+    SupersetSecurityException,
+    SupersetTimeoutException,
+)
+from superset.extensions import cache_manager
+from superset.sql.parse import SQLScript
+from superset.utils import core as utils
+
+if TYPE_CHECKING:
+    from superset_core.api.types import (
+        AsyncQueryHandle,
+        QueryOptions,
+        QueryResult,
+    )
+
+    from superset.models.core import Database
+    from superset.result_set import SupersetResultSet
+
+logger = logging.getLogger(__name__)
+
+
+def execute_sql_with_cursor(
+    database: Database,
+    cursor: Any,
+    statements: list[str],
+    query: Any,
+    log_query_fn: Any | None = None,
+    check_stopped_fn: Any | None = None,
+    execute_fn: Any | None = None,
+) -> list[tuple[str, SupersetResultSet | None, float, int]]:
+    """
+    Execute SQL statements with a cursor and return all result sets.
+
+    This is the shared execution logic used by both sync (SQLExecutor) and
+    async (celery_task) execution paths. It handles multi-statement execution
+    with progress tracking via the Query model.
+
+    :param database: Database model to execute against
+    :param cursor: Database cursor to use for execution
+    :param statements: List of SQL statements to execute
+    :param query: Query model for progress tracking
+    :param log_query_fn: Optional function to log queries, called as fn(sql, 
schema)
+    :param check_stopped_fn: Optional function to check if query was stopped.
+        Should return True if stopped. Used by async execution for 
cancellation.
+    :param execute_fn: Optional custom execute function. If not provided, uses
+        database.db_engine_spec.execute(cursor, sql, database). Custom function
+        should accept (cursor, sql) and handle execution.
+    :returns: List of (statement_sql, result_set, execution_time_ms, rowcount) 
tuples
+        Returns empty list if stopped. Raises exception on error (fail-fast).
+    """
+    from superset.result_set import SupersetResultSet
+
+    total = len(statements)
+    if total == 0:
+        return []
+
+    results: list[tuple[str, SupersetResultSet | None, float, int]] = []
+
+    for i, statement in enumerate(statements):
+        # Check if query was stopped (async cancellation)
+        if check_stopped_fn and check_stopped_fn():
+            return results
+
+        stmt_start_time = time.time()
+
+        # Apply SQL mutation
+        stmt_sql = database.mutate_sql_based_on_config(
+            statement,
+            is_split=True,
+        )
+
+        # Log query
+        if log_query_fn:
+            log_query_fn(stmt_sql, query.schema)
+
+        # Execute - use custom function or default
+        if execute_fn:
+            execute_fn(cursor, stmt_sql)
+        else:
+            database.db_engine_spec.execute(cursor, stmt_sql, database)
+
+        stmt_execution_time = (time.time() - stmt_start_time) * 1000
+
+        # Fetch results from ALL statements
+        description = cursor.description
+        if description:
+            rows = database.db_engine_spec.fetch_data(cursor)
+            result_set = SupersetResultSet(
+                rows,
+                description,
+                database.db_engine_spec,
+            )
+        else:
+            # DML statement - no result set
+            result_set = None
+
+        # Get row count for DML statements
+        rowcount = cursor.rowcount if hasattr(cursor, "rowcount") else 0
+
+        results.append((stmt_sql, result_set, stmt_execution_time, rowcount))
+
+        # Update progress on Query model
+        progress_pct = int(((i + 1) / total) * 100)
+        query.progress = progress_pct
+        query.set_extra_json_key(
+            "progress",
+            f"Running statement {i + 1} of {total}",
+        )
+        db.session.commit()  # pylint: disable=consider-using-transaction
+
+    return results
+
+
+class SQLExecutor:
+    """
+    SQL query executor implementation.
+
+    Implements Database.execute() and execute_async() methods.
+    See superset_core.api.models.Database for the full public API 
documentation.
+    """
+
+    def __init__(self, database: Database) -> None:
+        """
+        Initialize the executor with a database.
+
+        :param database: Database model instance to execute queries against
+        """
+        self.database = database
+
+    def execute(
+        self,
+        sql: str,
+        options: QueryOptions | None = None,
+    ) -> QueryResult:
+        """
+        Execute SQL synchronously.
+
+        If options.dry_run=True, returns the transformed SQL without execution.
+        All transformations (RLS, templates, limits) are still applied.
+
+        See superset_core.api.models.Database.execute() for full documentation.
+        """
+        from superset_core.api.types import (
+            QueryOptions as QueryOptionsType,
+            QueryResult as QueryResultType,
+            QueryStatus,
+            StatementResult,
+        )
+
+        opts: QueryOptionsType = options or QueryOptionsType()
+        start_time = time.time()
+
+        try:
+            # 1. Prepare SQL (assembly only, no security checks)
+            script, catalog, schema = self._prepare_sql(sql, opts)
+
+            # 2. Security checks
+            self._check_security(script)
+
+            # 3. Get mutation status and format SQL
+            has_mutation = script.has_mutation()
+            final_sql = script.format()
+
+            # DRY RUN: Return transformed SQL without execution
+            if opts.dry_run:
+                total_execution_time_ms = (time.time() - start_time) * 1000
+                # Create a StatementResult for each statement in dry-run mode
+                dry_run_statements = [
+                    StatementResult(
+                        statement=stmt.format(),
+                        data=None,
+                        row_count=0,
+                        execution_time_ms=0,
+                    )
+                    for stmt in script.statements
+                ]
+                return QueryResultType(
+                    status=QueryStatus.SUCCESS,
+                    statements=dry_run_statements,
+                    query_id=None,
+                    total_execution_time_ms=total_execution_time_ms,
+                    is_cached=False,
+                )
+
+            # 4. Check cache
+            cached_result = self._try_get_cached_result(has_mutation, 
final_sql, opts)
+            if cached_result:
+                return cached_result
+
+            # 5. Create Query model for audit
+            query = self._create_query_record(
+                final_sql, opts, catalog, schema, status="running"
+            )
+
+            # 6. Execute with timeout
+            timeout = opts.timeout_seconds or app.config.get("SQLLAB_TIMEOUT", 
30)
+            timeout_msg = f"Query exceeded the {timeout} seconds timeout."
+
+            with utils.timeout(seconds=timeout, error_message=timeout_msg):
+                statement_results = self._execute_statements(
+                    final_sql,
+                    catalog,
+                    schema,
+                    query,
+                )
+
+            total_execution_time_ms = (time.time() - start_time) * 1000
+
+            # Calculate total row count for Query model
+            total_rows = sum(stmt.row_count for stmt in statement_results)
+
+            # Update query record
+            query.status = "success"
+            query.rows = total_rows
+            query.progress = 100
+            db.session.commit()  # pylint: disable=consider-using-transaction
+
+            result = QueryResultType(
+                status=QueryStatus.SUCCESS,
+                statements=statement_results,
+                query_id=query.id,
+                total_execution_time_ms=total_execution_time_ms,
+            )
+
+            # Store in cache (if SELECT and caching enabled)
+            if not has_mutation:
+                self._store_in_cache(result, final_sql, opts)
+
+            return result
+
+        except SupersetTimeoutException:
+            return self._create_error_result(
+                QueryStatus.TIMED_OUT,
+                "Query exceeded the timeout limit",
+                sql,
+                start_time,
+            )
+        except SupersetSecurityException as ex:
+            return self._create_error_result(
+                QueryStatus.FAILED, str(ex), sql, start_time
+            )
+        except Exception as ex:
+            error_msg = self.database.db_engine_spec.extract_error_message(ex)
+            return self._create_error_result(
+                QueryStatus.FAILED, error_msg, sql, start_time
+            )
+
+    def execute_async(
+        self,
+        sql: str,
+        options: QueryOptions | None = None,
+    ) -> AsyncQueryHandle:
+        """
+        Execute SQL asynchronously via Celery.
+
+        If options.dry_run=True, returns the transformed SQL as a completed
+        AsyncQueryHandle without submitting to Celery.
+
+        See superset_core.api.models.Database.execute_async() for full 
documentation.
+        """
+        from superset_core.api.types import (
+            QueryOptions as QueryOptionsType,
+            QueryResult as QueryResultType,
+            QueryStatus,
+        )
+
+        opts: QueryOptionsType = options or QueryOptionsType()
+
+        # 1. Prepare SQL (assembly only, no security checks)
+        script, catalog, schema = self._prepare_sql(sql, opts)
+
+        # 2. Security checks
+        self._check_security(script)
+
+        # 3. Get mutation status and format SQL
+        has_mutation = script.has_mutation()
+        final_sql = script.format()
+
+        # DRY RUN: Return transformed SQL as completed async handle
+        if opts.dry_run:
+            from superset_core.api.types import StatementResult
+
+            dry_run_statements = [
+                StatementResult(
+                    statement=stmt.format(),
+                    data=None,
+                    row_count=0,
+                    execution_time_ms=0,
+                )
+                for stmt in script.statements
+            ]
+            dry_run_result = QueryResultType(
+                status=QueryStatus.SUCCESS,
+                statements=dry_run_statements,
+                query_id=None,
+                total_execution_time_ms=0,
+                is_cached=False,
+            )
+            return self._create_cached_handle(dry_run_result)
+
+        # 4. Check cache
+        if cached_result := self._try_get_cached_result(has_mutation, 
final_sql, opts):
+            return self._create_cached_handle(cached_result)
+
+        # 5. Create Query model for audit
+        query = self._create_query_record(
+            final_sql, opts, catalog, schema, status="pending"
+        )
+
+        # 6. Submit to Celery
+        self._submit_query_to_celery(query, final_sql, opts)
+
+        # 7. Create and return handle with bound methods
+        return self._create_async_handle(query.id)
+
+    def _prepare_sql(
+        self,
+        sql: str,
+        opts: QueryOptions,
+    ) -> tuple[SQLScript, str | None, str | None]:
+        """
+        Prepare SQL for execution (no side effects, no security checks).
+
+        This method performs SQL preprocessing:
+        1. Template rendering
+        2. SQL parsing
+        3. Catalog/schema resolution
+        4. RLS application
+        5. Limit application (if not mutation)
+
+        Security checks (disallowed functions, DML permission) are performed
+        by the caller after receiving the prepared script.
+
+        :param sql: Original SQL query
+        :param opts: Query options
+        :returns: Tuple of (prepared SQLScript, catalog, schema)
+        """
+        # 1. Render Jinja2 templates
+        rendered_sql = self._render_sql_template(sql, opts.template_params)
+
+        # 2. Parse SQL with SQLScript
+        script = SQLScript(rendered_sql, self.database.db_engine_spec.engine)
+
+        # 3. Get catalog and schema
+        catalog = opts.catalog or self.database.get_default_catalog()
+        schema = opts.schema or self.database.get_default_schema(catalog)
+
+        # 4. Apply RLS directly to script statements
+        self._apply_rls_to_script(script, catalog, schema)
+
+        # 5. Apply limit only if not a mutation
+        if not script.has_mutation():
+            self._apply_limit_to_script(script, opts)
+
+        return script, catalog, schema
+
+    def _check_security(self, script: SQLScript) -> None:
+        """
+        Perform security checks on prepared SQL script.
+
+        :param script: Prepared SQLScript
+        :raises SupersetSecurityException: If security checks fail
+        """
+        # Check disallowed functions
+        if disallowed := self._check_disallowed_functions(script):
+            raise SupersetSecurityException(
+                SupersetError(
+                    message=f"Disallowed SQL functions: {', 
'.join(disallowed)}",
+                    error_type=SupersetErrorType.INVALID_SQL_ERROR,
+                    level=ErrorLevel.ERROR,
+                )
+            )
+
+        # Check DML permission
+        if script.has_mutation() and not self.database.allow_dml:
+            raise SupersetSecurityException(
+                SupersetError(
+                    message="DML queries are not allowed on this database",
+                    error_type=SupersetErrorType.DML_NOT_ALLOWED_ERROR,
+                    level=ErrorLevel.ERROR,
+                )
+            )
+
+    def _execute_statements(
+        self,
+        sql: str,
+        catalog: str | None,
+        schema: str | None,
+        query: Any,
+    ) -> list[Any]:
+        """
+        Execute SQL statements and return per-statement results.
+
+        Progress is tracked via Query.progress field.
+        Uses the same execution path for both single and multi-statement 
queries.
+
+        :param sql: Final SQL to execute (with RLS and all transformations 
applied)
+        :param catalog: Catalog name
+        :param schema: Schema name
+        :param query: Query model for progress tracking
+        :returns: List of StatementResult objects
+        """
+        from superset_core.api.types import StatementResult
+
+        # Parse the final SQL (with RLS applied) to get statements
+        script = SQLScript(sql, self.database.db_engine_spec.engine)
+        statements = script.statements
+
+        # Handle empty script
+        if not statements:
+            return []
+
+        results_list = []
+
+        # Use consistent execution path for all queries
+        with self.database.get_raw_connection(catalog=catalog, schema=schema) 
as conn:
+            cursor = conn.cursor()
+
+            execution_results = execute_sql_with_cursor(
+                database=self.database,
+                cursor=cursor,
+                statements=[stmt.format() for stmt in statements],
+                query=query,
+                log_query_fn=self._log_query,
+            )
+
+            # Build StatementResult for each executed statement
+            for stmt_sql, result_set, exec_time, rowcount in execution_results:
+                if result_set is not None:
+                    # SELECT statement
+                    df = result_set.to_pandas_df()
+                    stmt_result = StatementResult(
+                        statement=stmt_sql,
+                        data=df,
+                        row_count=len(df),
+                        execution_time_ms=exec_time,
+                    )
+                else:
+                    # DML statement - no data, just row count
+                    stmt_result = StatementResult(
+                        statement=stmt_sql,
+                        data=None,
+                        row_count=rowcount,
+                        execution_time_ms=exec_time,
+                    )
+
+                results_list.append(stmt_result)
+
+        return results_list
+
+    def _log_query(
+        self,
+        sql: str,
+        schema: str | None,
+    ) -> None:
+        """
+        Log query using QUERY_LOGGER config.
+
+        :param sql: SQL to log
+        :param schema: Schema name
+        """
+        from superset import security_manager
+
+        if log_query := app.config.get("QUERY_LOGGER"):
+            log_query(
+                self.database,
+                sql,
+                schema,
+                __name__,
+                security_manager,
+                {},
+            )
+
+    def _create_error_result(
+        self,
+        status: Any,
+        error_message: str,
+        sql: str,
+        start_time: float,
+        partial_results: list[Any] | None = None,
+    ) -> QueryResult:
+        """
+        Create a QueryResult for error cases.
+
+        :param status: QueryStatus enum value
+        :param error_message: Error message to include
+        :param sql: SQL query (original if error occurred before 
transformation)
+        :param start_time: Start time for calculating execution duration
+        :param partial_results: Optional list of StatementResult from 
successful
+            statements before the failure
+        :returns: QueryResult with error status
+        """
+        from superset_core.api.types import QueryResult as QueryResultType
+
+        return QueryResultType(
+            status=status,
+            statements=partial_results or [],
+            error_message=error_message,
+            total_execution_time_ms=(time.time() - start_time) * 1000,
+        )
+
+    def _render_sql_template(
+        self, sql: str, template_params: dict[str, Any] | None
+    ) -> str:
+        """
+        Render Jinja2 template with params.
+
+        :param sql: SQL string potentially containing Jinja2 templates
+        :param template_params: Parameters to pass to the template
+        :returns: Rendered SQL string
+        """
+        if template_params is None:
+            return sql
+
+        from superset.jinja_context import get_template_processor
+
+        tp = get_template_processor(database=self.database)
+        return tp.process_template(sql, **template_params)
+
+    def _apply_limit_to_script(self, script: SQLScript, opts: QueryOptions) -> 
None:
+        """
+        Apply limit to the last statement in the script in place.
+
+        :param script: SQLScript object to modify
+        :param opts: Query options
+        """
+        # Skip if no limit requested
+        if opts.limit is None:
+            return
+
+        sql_max_row = app.config.get("SQL_MAX_ROW")
+        effective_limit = opts.limit
+        if sql_max_row and opts.limit > sql_max_row:
+            effective_limit = sql_max_row
+
+        # Apply limit to last statement only
+        if script.statements:
+            script.statements[-1].set_limit_value(
+                effective_limit,
+                self.database.db_engine_spec.limit_method,
+            )
+
+    def _try_get_cached_result(
+        self,
+        has_mutation: bool,
+        sql: str,
+        opts: QueryOptions,
+    ) -> QueryResult | None:
+        """
+        Try to get a cached result if conditions allow.
+
+        :param has_mutation: Whether the query contains mutations (DML)
+        :param sql: SQL query
+        :param opts: Query options
+        :returns: Cached QueryResult or None
+        """
+        if has_mutation or (opts.cache and opts.cache.force_refresh):
+            return None
+
+        return self._get_from_cache(sql, opts)
+
+    def _check_disallowed_functions(self, script: SQLScript) -> set[str] | 
None:
+        """
+        Check for disallowed SQL functions.
+
+        :param script: Parsed SQL script
+        :returns: Set of disallowed functions found, or None if none found
+        """
+        disallowed_config = app.config.get("DISALLOWED_SQL_FUNCTIONS", {})
+        engine_name = self.database.db_engine_spec.engine
+
+        # Get disallowed functions for this engine
+        engine_disallowed = disallowed_config.get(engine_name, set())
+        if not engine_disallowed:
+            return None
+
+        # Check each statement for disallowed functions
+        found = set()
+        for statement in script.statements:
+            # Use the statement's AST to check for function calls
+            statement_str = str(statement).upper()
+            for func in engine_disallowed:
+                if func.upper() in statement_str:
+                    found.add(func)
+
+        return found if found else None
+
+    def _apply_rls_to_script(
+        self, script: SQLScript, catalog: str | None, schema: str | None
+    ) -> None:
+        """
+        Apply Row-Level Security to SQLScript statements in place.
+
+        :param script: SQLScript object to modify
+        :param catalog: Catalog name
+        :param schema: Schema name
+        """
+        from superset.utils.rls import apply_rls
+
+        # Apply RLS to each statement in the script
+        for statement in script.statements:
+            apply_rls(self.database, catalog, schema or "", statement)
+
+    def _create_query_record(
+        self,
+        sql: str,
+        opts: QueryOptions,
+        catalog: str | None,
+        schema: str | None,
+        status: str = "running",
+    ) -> Any:
+        """
+        Create Query model for audit/tracking.
+
+        :param sql: SQL to execute
+        :param opts: Query options
+        :param catalog: Catalog name
+        :param schema: Schema name
+        :param status: Initial query status ("running" for sync, "pending" for 
async)
+        :returns: Query model instance
+        """
+        import uuid
+
+        from superset.models.sql_lab import Query as QueryModel
+
+        user_id = None
+        if has_app_context() and hasattr(g, "user") and g.user:
+            user_id = g.user.get_id()
+
+        # Generate client_id for Query model
+        client_id = uuid.uuid4().hex[:11]
+
+        query = QueryModel(
+            client_id=client_id,
+            database_id=self.database.id,
+            sql=sql,
+            catalog=catalog,
+            schema=schema,
+            user_id=user_id,
+            status=status,
+            limit=opts.limit,
+        )
+        db.session.add(query)
+        db.session.commit()  # pylint: disable=consider-using-transaction
+
+        return query
+
+    def _get_from_cache(self, sql: str, opts: QueryOptions) -> QueryResult | 
None:
+        """
+        Check results cache for existing result.
+
+        :param sql: SQL query
+        :param opts: Query options
+        :returns: Cached QueryResult if found, None otherwise
+        """
+        from superset_core.api.types import (
+            QueryResult as QueryResultType,
+            QueryStatus,
+            StatementResult,
+        )
+
+        cache_key = self._generate_cache_key(sql, opts)
+
+        if (cached := cache_manager.data_cache.get(cache_key)) is not None:
+            # Reconstruct statement results from cached data
+            statements = [
+                StatementResult(
+                    statement=stmt_data["statement"],
+                    data=stmt_data["data"],
+                    row_count=stmt_data["row_count"],
+                    execution_time_ms=stmt_data["execution_time_ms"],
+                )
+                for stmt_data in cached.get("statements", [])
+            ]
+            return QueryResultType(
+                status=QueryStatus.SUCCESS,
+                statements=statements,
+                is_cached=True,
+                total_execution_time_ms=cached.get("total_execution_time_ms", 
0),
+            )
+
+        return None
+
+    def _store_in_cache(
+        self, result: QueryResult, sql: str, opts: QueryOptions
+    ) -> None:
+        """
+        Store result in cache.
+
+        :param result: Query result to cache
+        :param sql: SQL query (for cache key)
+        :param opts: Query options
+        """
+        from superset_core.api.types import QueryStatus
+
+        if result.status != QueryStatus.SUCCESS:
+            return
+
+        cache_key = self._generate_cache_key(sql, opts)
+        timeout = (
+            (opts.cache.timeout if opts.cache else None)
+            or self.database.cache_timeout
+            or app.config.get("CACHE_DEFAULT_TIMEOUT", 300)
+        )
+
+        # Serialize statement results for caching
+        cached_data = {
+            "statements": [
+                {
+                    "statement": stmt.statement,
+                    "data": stmt.data,
+                    "row_count": stmt.row_count,
+                    "execution_time_ms": stmt.execution_time_ms,
+                }
+                for stmt in result.statements
+            ],
+            "total_execution_time_ms": result.total_execution_time_ms,
+        }
+
+        cache_manager.data_cache.set(
+            cache_key,
+            cached_data,
+            timeout=timeout,
+        )
+
+    def _generate_cache_key(self, sql: str, opts: QueryOptions) -> str:
+        """
+        Generate cache key for query result.
+
+        :param sql: SQL query
+        :param opts: Query options
+        :returns: Cache key string
+        """
+        import hashlib
+
+        # Include relevant options in the cache key
+        key_parts = [
+            str(self.database.id),
+            sql,
+            opts.catalog or "",
+            opts.schema or "",
+            str(opts.limit) if opts.limit is not None else "",
+        ]
+        key_string = "|".join(key_parts)
+        return hashlib.sha256(key_string.encode()).hexdigest()
+
+    def _submit_query_to_celery(
+        self,
+        query: Any,
+        rendered_sql: str,
+        opts: QueryOptions,
+    ) -> None:
+        """
+        Submit query to Celery for async execution.
+
+        :param query: Query model instance
+        :param rendered_sql: Rendered SQL to execute
+        :param opts: Query options
+        :raises: Re-raises any exception after marking query as failed
+        """
+        from superset.sql.execution.celery_task import execute_sql_task
+        from superset.utils.core import get_username
+        from superset.utils.dates import now_as_float
+
+        try:
+            task = execute_sql_task.delay(
+                query.id,
+                rendered_sql,
+                username=get_username(),
+                start_time=now_as_float(),
+            )
+            task.forget()  # Don't track task result in Celery backend
+        except Exception as ex:
+            query.status = "failed"
+            query.error_message = str(ex)
+            db.session.commit()  # pylint: disable=consider-using-transaction
+            raise

Review Comment:
    - This is intentional dual error handling with two important goals:
      a. Persist failure state: Update Query model so database record shows 
"failed" status
      b. Propagate to caller: Re-raise so execute_async() caller knows 
submission failed
    - Without the try-catch: Query would remain in "pending" state forever if 
Celery submission
    fails
    - Without the re-raise: Caller would think submission succeeded when it 
failed
    - This pattern is correct for async job submission failures where you need 
to:
      - Record the failure in persistent storage
      - Return an error to the API caller
    - Similar patterns exist throughout Superset for task submission error 
handling



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to