Hi, notice the (confusing, imho) different defaults for the axis of the following related functions:
nansum(a, axis=-1) Sum the array over the given axis, treating NaNs as 0. sum(x, axis=None, dtype=None) Sum the array over the given axis. The optional dtype argument is the data type for intermediate calculations. average(a, axis=0, weights=None, returned=False) average(a, axis=0, weights=None, returned=False) Average the array over the given axis. If the axis is None, average over all dimensions of the array. Equivalent to a.mean(axis), but with a default axis of 0 instead of None. >>> numpy.__version__ '1.0b2.dev2973' Shouldn't those kind of functions have the same default behavior? So is this a bug or am I missing something? Thanks for enlightenment, Sven ------------------------------------------------------------------------- Using Tomcat but need to do more? Need to support web services, security? Get stuff done quickly with pre-integrated technology to make your job easier Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo http://sel.as-us.falkag.net/sel?cmd=lnk&kid=120709&bid=263057&dat=121642 _______________________________________________ Numpy-discussion mailing list Numpy-discussion@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/numpy-discussion