I was surprised to see that numarray.mlab.cov is returning a rank-0
complex number when given two 1D arrays as inputs rather than the
standard 2x2 covariance array I am used to seeing.  Is this a feature
or a bug?  


In [2]: import numarray.mlab as nam

In [3]: x = nam.rand(10)

In [4]: y = nam.rand(10)  

In [5]: nam.cov(x, y)
Out[5]: array((0.014697855954587828+0j))

In [6]: import numpy.oldnumeric.mlab as npm

In [7]: x = npm.rand(10)

In [8]: y = npm.rand(10)

In [9]: npm.cov(x, y)
Out[9]: 
array([[ 0.13243082,  0.0520454 ],
       [ 0.0520454 ,  0.07435816]])

In [10]: import numarray

In [11]: numarray.__version__
Out[11]: '1.3.3'

In [12]: import numpy

In [13]: numpy.__version__
Out[13]: '1.0b2.dev2999'

-------------------------------------------------------------------------
Using Tomcat but need to do more? Need to support web services, security?
Get stuff done quickly with pre-integrated technology to make your job easier
Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo
http://sel.as-us.falkag.net/sel?cmd=lnk&kid=120709&bid=263057&dat=121642
_______________________________________________
Numpy-discussion mailing list
Numpy-discussion@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/numpy-discussion

Reply via email to