I would use a complex32 dtype if it existed, whether provided by numpy or
another library.

My guess would be that there was not much demand for a complex32 datatype
since float16s are slow and are generally used as a storage format [1] and
you could easily store a complex array as two float16 arrays and get the
same space savings.

That said, I am occasionally storing complex-valued validation data in
memory, and the datatype would make it more convenient. I just don't know
how common my use case is. Maybe there are more compelling use cases? I
know some GPUs natively support float16, I'm not sure how common complex32
support is though.

[1] https://stackoverflow.com/a/24590380/5026175


On Thu, Jul 11, 2019 at 7:47 AM Neal Becker <ndbeck...@gmail.com> wrote:

> I see a float16 dtype but not complex32.  Is this an oversight?
>
> Thanks,
> Neal
>
> --
> Those who don't understand recursion are doomed to repeat it
> _______________________________________________
> NumPy-Discussion mailing list
> NumPy-Discussion@python.org
> https://mail.python.org/mailman/listinfo/numpy-discussion
>
_______________________________________________
NumPy-Discussion mailing list
NumPy-Discussion@python.org
https://mail.python.org/mailman/listinfo/numpy-discussion

Reply via email to