I tried to calculate the second fourier transformation of an image with the following code below:
--------------------------------------------------------------- import pylab import numpy ### Create a simple image fx = numpy.zeros( 128**2 ).reshape(128,128).astype( numpy.float ) for i in xrange(8): for j in xrange(8): fx[i*8+16][j*8+16] = 1.0 ### Fourier Transformations Ffx = numpy.copy( numpy.fft.fft2( fx ).real ) # 1st fourier FFfx = numpy.copy( numpy.fft.fft2( Ffx ).real ) # 2nd fourier IFfx = numpy.copy( numpy.fft.ifft2( Ffx ).real ) # inverse fourier ### Display result pylab.figure( 1, figsize=(8,8), dpi=125 ) pylab.subplot(221) pylab.imshow( fx, cmap=pylab.cm.gray ) pylab.colorbar() pylab.title( "fx" ) pylab.subplot(222) pylab.imshow( Ffx, cmap=pylab.cm.gray ) pylab.colorbar() pylab.title( "Ffx" ) pylab.subplot(223) pylab.imshow( FFfx, cmap=pylab.cm.gray ) pylab.colorbar() pylab.title( "FFfx" ) pylab.subplot(224) pylab.imshow( IFfx, cmap=pylab.cm.gray ) pylab.colorbar() pylab.title( "IFfx" ) pylab.show() --------------------------------------------------------------- On my computer FFfx is the same as IFfx..... but why? I uploaded a screenshot about my result here: http://server6.theimagehosting.com/image.php?img=second_fourier.png Bela -- View this message in context: http://www.nabble.com/second-2d-fft-gives-the-same-result-as-fft%2Bifft-tp23945026p23945026.html Sent from the Numpy-discussion mailing list archive at Nabble.com. _______________________________________________ Numpy-discussion mailing list Numpy-discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion