On Sat, Feb 27, 2010 at 11:11 PM, Friedrich Romstedt <friedrichromst...@gmail.com> wrote: > Ok, it took me about one hour, but here they are: Fourier-accelerated > polynomials.
that's the spirit! ;) > >> python > Python 2.4.1 (#65, Mar 30 2005, 09:13:57) [MSC v.1310 32 bit (Intel)] on win32 > Type "help", "copyright", "credits" or "license" for more information. >>>> import gdft_polynomial >>>> p1 = gdft_polynomial.Polynomial([1]) >>>> p2 = gdft_polynomial.Polynomial([2]) >>>> p1 * p2 > <gdft_polynomial.polynomial.Polynomial instance at 0x00E78A08> >>>> print p1 * p2 > [ 2.+0.j] >>>> p1 = gdft_polynomial.Polynomial([1, 1]) >>>> p2 = gdft_polynomial.Polynomial([1]) >>>> print p1 * p2 > [ 1. +6.12303177e-17j 1. -6.12303177e-17j] >>>> p2 = gdft_polynomial.Polynomial([1, 2]) >>>> print p1 * p2 > [ 1. +8.51170986e-16j 3. +3.70074342e-17j 2. -4.44089210e-16j] >>>> p1 = gdft_polynomial.Polynomial([1, 2, 3, 4, 3, 2, 1]) >>>> p2 = gdft_polynomial.Polynomial([4, 3, 2, 1, 2, 3, 4]) >>>> print (p1 * p2).coefficients.real > [ 4. 11. 20. 30. 34. 35. 36. 35. 34. 30. 20. 11. 4.] >>>> > > github.com/friedrichromstedt/gdft_polynomials > > It's open for bug hunting :-) > > Haven't checked the last result. looks correct > > I used my own gdft module. Maybe one could incorporate numpy.fft > easily. But that's your job, Sebastian, isn't it? Feel free to push > to the repo, and don't forget to add your name to the copyright > notice, hope you are happy with MIT. i'll have a look at it. > > Anyway, I don't know whether numpy.fft supports transforming only one > coordinate and using the others for "parallelisation"? > > Friedrich > _______________________________________________ > NumPy-Discussion mailing list > NumPy-Discussion@scipy.org > http://mail.scipy.org/mailman/listinfo/numpy-discussion > _______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion