Your function looks fairly simple to differentiate by hand, but if you have
access to the gradient (or you estimate it numerically using scipy...),
this function might do the job:

def hessian ( x, the_func, epsilon=1e-8):
    """Numerical approximation to the Hessian
    Parameters
    ------------
    x: array-like
        The evaluation point
    the_func: function
        The function. We assume that the function returns the function
value and
        the associated gradient as the second return element
    epsilon: float
        The size of the step
    """

    N = x.size
    h = np.zeros((N,N))
    df_0 = the_func ( x )[1]
    for i in xrange(N):
        xx0 = 1.*x[i]
        x[i] = xx0 + epsilon
        df_1 = the_func ( x )[1]
        h[i,:] = (df_1 - df_0)/epsilon
        x[i] = xx0
    return h

Jose


On 8 August 2014 08:31, Kiko <kikocorre...@gmail.com> wrote:

> Hi all,
>
> I am trying to calculate a Hessian. I am using numdifftools for this (
> https://pypi.python.org/pypi/Numdifftools).
>
> My question is, is it possible to make it using pure numpy?.
>
> The actual code is like this:
>
>
> *import numdifftools as nd*
> *import numpy as np*
>
> *def log_likelihood(params):*
> *    sum1 = 0; sum2 = 0*
> *    mu = params[0]; sigma = params[1]; xi = params[2]*
> *    for z in data:*
> *        x = 1 + xi * ((z-mu)/sigma)*
> *        sum1 += np.log(x)*
> *        sum2 += x**(-1.0/xi)*
> *    return -((-len(data) * np.log(sigma)) - (1 + 1/xi)*sum1 - sum2) #
> negated so we can use 'minimum'*
>
> *kk = nd.Hessian(log_likelihood)*
>
> Thanks in advance.
>
> _______________________________________________
> NumPy-Discussion mailing list
> NumPy-Discussion@scipy.org
> http://mail.scipy.org/mailman/listinfo/numpy-discussion
>
>
_______________________________________________
NumPy-Discussion mailing list
NumPy-Discussion@scipy.org
http://mail.scipy.org/mailman/listinfo/numpy-discussion

Reply via email to