On Fri, Aug 29, 2014 at 8:10 PM, Benjamin Root <ben.r...@ou.edu> wrote:
> Consider the following: > > a = np.array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=[('foo', 'i'), ('bar', > 'a1')]) > b = np.append(a, (4, 'd')) > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > File > "/home/ben/miniconda/lib/python2.7/site-packages/numpy/lib/function_base.py", > line 3555, in append > return concatenate((arr, values), axis=axis) > TypeError: invalid type promotion > b = np.insert(a, 4, (4, 'd')) > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > File > "/home/ben/miniconda/lib/python2.7/site-packages/numpy/lib/function_base.py", > line 3464, in insert > new[slobj] = values > ValueError: could not convert string to float: d > > In my original code snippet I was developing which has a more involved > dtype, I actually got a different exception: > b = np.append(a, c) > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > File > "/home/ben/miniconda/lib/python2.7/site-packages/numpy/lib/function_base.py", > line 3553, in append > values = ravel(values) > File > "/home/ben/miniconda/lib/python2.7/site-packages/numpy/core/fromnumeric.py", > line 1367, in ravel > return asarray(a).ravel(order) > File > "/home/ben/miniconda/lib/python2.7/site-packages/numpy/core/numeric.py", > line 460, in asarray > return array(a, dtype, copy=False, order=order) > ValueError: setting an array element with a sequence. > > Luckily, this works as a work-around: > >>> b = np.append(a, np.array([(4, 'd')], dtype=a.dtype)) > >>> b > array([(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')], > dtype=[('foo', 'i'), ('bar', 'S1')]) > > The same happens whether I enclose the value with square bracket or not. I > suspect that this array type just wasn't considered when its checking logic > was developed. This is with 1.8.2 from miniconda. Should we consider this a > bug or are structured arrays just not expected to be modified like this? > > Could be one of many bug reports related to assignment to structured types. Can you try using `x`? In [25]: x = array([(4, 'd')], dt)[0] In [26]: type(x) Out[26]: numpy.void In [27]: x Out[27]: (4, 'd') Chuck
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion