On Fri, 21 Jul 2000, Nicolau Corcao Saldanha wrote:
> A IMO2000 esta disponivel agora tambem em
> http://www.mat.puc-rio.br/~nicolau/olimp
> (ingles, frances e espanhol; arquivos *.gif).
>
E ai, ninguém comenta nada da prova?
Eu gostei muito do problema 3 (das pulgas)
e do 5 (2^n + 1 é múltiplo de n e n tem 2000 fatores primos).
Lembro do enunciado do problema 3:
Seja n >= 2 um inteiro. Inicialmente, existem n pulgas
em uma linha horizontal, não todas no mesmo ponto.
Para um número real positivo l (lambda na prova),
defina um movimento da seguinte forma:
Escolha duas pulgas com posições A e B, A à esquerda de B;
A pulga que estava em A pula para o ponto C à direita de B
com BC/AB = l.
Determine os valores de l para os quais, para qualquer M
na linha e qualquer posição inicial das pulgas,
existe uma seqüência finita de movimentos que leva todas
as pulgas para posições à direita de M.
Segue lá embaixo uma solução xroteada, ou seja, trocando
a por n, b por o, ... Eu recomendo só ler depois de tentar!
Obs: letras acentuadas e pontuação não foram alteradas.
Não reclamem se tiverem dificuldades em decifrar,
eu publicarei uma versão limpa depois...
[]s, N.
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
cuidado, solução se aproximando!
N erfcbfgn é cnen y >= 1/(a-1).
Qrirzbf qrzbafgene qhnf pbvfnf:
(n) dhr cnen y >= 1/(a-1) rkvfgr hzn frdüêapvn vasvavgn qr zbivzragbf
dhr inv yrinaqb nf chytnf pnqn irm znvf cnen n qvervgn, hygencnffnaqb
dhnydhre cbagb cersvknqb Z;
(o) dhr cnen y < 1/(a-1) r cnen dhnydhre cbfvçãb vavpvny qnqn qnf chytnf
rkvfgr hz cbagb Z gny dhr nf chytnf rz hz aúzreb svavgb qr zbivzragbf
wnznvf nypnaçnz bh hygencnffnz Z.
Pbzrçnerv cryb vgrz (o). Frwnz k_1, k_2, ..., k_a nf cbfvçõrf vavpvnvf
qnf chytnf, pbz k_1 <= k_2 <= ... <= k_a, qr gny sbezn dhr k_a é n cbfvçãb
qn chytn znvf à qvervgn.
Frwn Z = (1/(1 - (a-1)y)) * (k_a - y*k_1 - y*k_2 - ... - y*k_{a-1}).
B cbagb Z pynenzragr rfgá à qvervgn qr gbqnf nf chytnf.
Nsveznzbf dhr fr ncóf nythaf zbivzragb nf abinf cbfvçõrf fãb
k'_1, ..., k'_a r fr qrsvavzbf
Z' = (1/(1 - (a-1)y)) * (k'_a - y*k'_1 - y*k'_2 - ... - y*k'_{a-1})
ragãb Z' <= Z; vfgb pbapyhveá n qrzbafgençãb.
Onfgn pbafvqrene b dhr bpbeer ncóf hz zbivzragb.
Fr n chytn dhr rfgnin rz k_v chyn fboer n chytn dhr rfgnin rz k_a
ragãb k'_a - k_a = y*(k_a - k_v) r k'_a - y*k_a = k_a - y*k_v r Z' = Z.
Dhnydhre bhgeb pnfb é nvaqn znvf snibeáiry.
B vgrz (n) r n zbgvinçãb cnen n sóezhyn qr Z rh qrvkb cnen ibpêf crafnerz...