Oi pessoal, vamos acalmar com calma: Espero que essa mensagem possa ajudar neste problema (embora possa como todas as minhas outras possa ser apenas um pitaco sem nenhuma utilidade).
Sabemos que: (n^2 - 1)^2 + (2n)^2 = (n^2 +1)^2 para n natural, n>1 ela dá todos os triângulos pitagóricos. Ex: n=2 : 3^2 + 4^2 = 5^2 . A intenção é usar essa identidade para tentar obter quadrados perfeitos naturais da forma Delta^2 = b^2 - 4ac. Neste caso usamos: (n^2 - 1)^2 = (n^2 +1)^2 - (2n)^2 (n^2 - 1)^2 = (n^2 +1)^2 - 4 n^2 Supondo a = 1 (sempre dá para fazer a=1 em uma eq. do 2 grau). Temos então que ter: b = n^2 +1 c= n^2 ==> b = c+1 Bom... agora será que dá para aplicar isso à equação em jogo? >100a+b = a^2 + b^2 >basta resolver essa eq de 2º grau com relação a a >e temos >a = 50 +- sqrt(2500+b-b^2) Para não causar confusão vamos trocar a por x e b por y: 100x + y = x^2 + y^2 x^2 -100x +y -y^2 = 0 Construindo o Delta: Delta^2 = 100^2 - 4*(y-y^2) com b = 100 e c = y-y^2 como b= c+1 100 = y-y^2 +1 Quais y naturais com 2 algarismos verificam isso? ========================================================================= Instruções para entrar na lista, sair da lista e usar a lista em http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html =========================================================================