Obrigado Bruno,
   
  estou estudando no livro de cálculo do ANTON, mas também ví isso no STEWART. 
Eles dizem que existe f ^ -1 se e somente se f é injetiva. Não teria que ser 
sobrejetiva, de acordo com o que você escreveu ? Ou ele sempre considera f 
sobrejetiva ?
   
  abraços
   
  Dênis

Bruno França dos Reis <[EMAIL PROTECTED]> escreveu:
  Não são redundantes. Suponha f: A --> B, e g: B --> A, tais que g(f(x)) = x, 
para todo x de A. Então a função g é chamada inversa à esquerda de x. Mas isso 
não garante que f(g(x)) = x, pq ninguem falou que g é inversa à direita de f. 

Esses conceitos estão ligados aos de função injetiva e função sobrejetiva. Vou 
mostrar duas equivalências a esse respeito, demonstrando apenas uma parte da 
primeira, que servirá de ilustração à sua pergunta.

(a) f injetiva <==> f admite inversa à esquerda

Suponha f injetiva. Assim, a pré-imagem de qualquer elemento de f(A) terá 
apenas um único elemento. Defina h: f(A) contido em B --> A por h(x) = f^(-1) 
(h(x)), isto é: a cada elemento da imagem de f associe o único elemento de A 
que a função f o tem por imagem. Agora estenda h para todo o conjunto B 
construindo a função g: B --> A dada por g(x) = h(x) se x pertence a f(A), ou 
g(x) = K, se x não pertence a f(A), onde K é um elemento qualquer, fixado, de 
A. 
Assim, temos que g é inversa à esquerda de f, ie, g(f(x)) = x, para todo x em 
A. Observe que não necessariamente vale f(g(x)) = x. Para ver um exemplo, vc 
precisa que B - f(A) != vazio, isto é, f não é sobrejetiva; assim, basta tomar 
um elemento x em B - f(A); f(g(x)) pertence a f(A), ao passo que x pertence ao 
complementar de f(A), assim f(g(x)) != x !! 

Vou deixar o outro sentido da equivalência para vc tentar.

(b) f sobrejetiva <==> f admite inversa à direita


Se vc quiser um exemplo bem simples para o caso (a), pegue a função f: N --> N 
dada por f(x) = 2x. 
Veja que f é injetiva, mas não sobrejetiva. Por (a) e (b), ela admite inversa à 
esquerda mas não inversa à direita. Vejamos:
Defina a função g: N --> N por: g(x) = 1 se x for ímpar e g(x) = x/2 se x for 
par. Neste caso, g(f(x)) = x, pois g(f(x)) = g(2x) = x, pois 2x é sempre par, 
já que x é natural. 
O inverso não ocorre: f(g(x)) = 2 se x for ímpar ou f(g(x)) = x, se x for par. 
Assim, é errado dizer que f(g(x)) = x para todo x, então g não é inversa à 
direita de f.


Se uma função for sobrejetiva e injetiva (ie, bijetiva), então por (a) e (b) 
ela adimitirá inversas à direita e à esquerda. Vc pode verificar que ambas as 
inversas são a mesma função, e então a chamaremos simplesmente de inversa de f. 
(ou seja: se f: A --> B, g: B --> A e h: B --> A são tais que f(g(x)) = x, para 
todo x em B, e h(f(x)) = x para todo x em A, então g = h; veja que simples: 
f(g(x)) = x, aplique h dos dois lados: h(f(g(x))) = h(x). Mas h(f(?)) = ?, para 
todo ?, então h(f(g(x))) = g(x), para todo x. Assim h(x) = g(x), para todo x em 
B) 



Qualquer coisa pergunte!
Abraço
Bruno

ps: qualquer livro de análise real que se preocupe em fazer toda a teoria desde 
o princípio tem isso. Um exemplo é o do Élon Lages Lima, Curso de Análise - vol 
1. 




  On 3/16/07, Dênis Emanuel da Costa Vargas <[EMAIL PROTECTED]> wrote:     
Caros amigos da lista,
   
  f e g são inversas se as duas condições são satisfeitas : 
   
  1) fog(x)=x
  2) gof(x)=x
   
  Mas elas não são redundantes não ? Se fog(x)=x obrigatóriamente gof(x)=x ?
   
  Por favor, mandem um contra-exemplo de f e g tais que fog(x)=x mas gof(x)<>x 
   
  obrigado
   
  Dênis
  __________________________________________________
Fale com seus amigos de graça com o novo Yahoo! Messenger 
http://br.messenger.yahoo.com/ 




-- 
Bruno França dos Reis 
email: bfreis - gmail.com
gpg-key: http://planeta.terra.com.br/informatica/brunoreis/brunoreis.key
icq: 12626000 

e^(pi*i)+1=0 

 __________________________________________________
Fale com seus amigos  de graça com o novo Yahoo! Messenger 
http://br.messenger.yahoo.com/ 

Responder a