Obrigado, Dênis...agora sim ficou claro. Esse realmente é um defeito meu.Tenho muito erro de transcrição nas minhas resoluções. Um abraço!
Date: Fri, 28 Sep 2007 15:55:23 -0300From: [EMAIL PROTECTED]: RE: [obm-l] Derivada Parcial - Melhor ExplicadoTo: obm-l@mat.puc-rio.br Oi Anselmo, desculpe por explicar resumidamente. Vou tentar sanar a dúvida em questão: quando você fez lim_{t->0} [12*t*0^2 - 3*t^2) / (0^2+t) faltou o t que dividia a diferença entre a função no (0,0) e no (0,t), pois esse limite acima está só no numerador da fração. Foi uma questão de esquecimento. Só isso. Assim, o t^2 corta e sobra uma constante, que, como se sabe, o limite de uma constante é ela própria. abraços, espero ter melhorado Dênis CEFET - Minas Gerais Dênis Emanuel da Costa Vargas <[EMAIL PROTECTED]> escreveu: Correções em vermelho. Espero ter ajudado! abraços DênisAnselmo Sousa <[EMAIL PROTECTED]> escreveu: Dênis, tudo bem, observei esse fato. mas pensemos assim: lim_{t->0} [f(0,0+t)-f(0,0)]/t ; é certo que t=! 0 então reescrevemos lim_{t->0} [f(0,t)-0)]/t usando a definição anteriorlim_{t->0} [12*t*0^2 - 3*t^2) / (0^2+t) / t lim_{t->0} [-3t^2]/t^2 <=> lim_{t->0} [-3]= - 3 ONDE ESTÁ O MEU ERRO?! Continuo em dúvida! Date: Thu, 27 Sep 2007 10:56:17 -0300From: [EMAIL PROTECTED]: Re: [obm-l] Derivada ParcialTo: obm-l@mat.puc-rio.br O fato é o seguinte: quando (x,y)=!(0,0) é só derivar a primeira expressão em relação a y e substituir y=0 que você encontra 12, como você já fez. Mas ao encontrar a derivada no ponto (0,0) em relação a y, você está derivando o valor 0, que dá zero. Mas derivada é um limite e limite diz o comportamento na vizinhança de um ponto. Portanto, o mais sensato é escrever o limite. lim_{dy->0} [f(0,dy)-f(0,0)]/dy e você verá que dá -3. abraços DênisAnselmo Sousa <[EMAIL PROTECTED]> escreveu: Pessoal, fiquei em dúvida nessa questão porque o livro traz uma resposta diferente do que encontrei. Como confio mais no livro...alguém poderia confirmar as respostas, por favor. 59. Ache a) f_2(x,0) se x=! 0 e b) f_2(0,0) se f(x,y) = (12*y*x^2 - 3*y^2) / (x^2+y) se (x,y)=!(0,0) f(x,y)= 0 se (x,y)=(0,0) p.s. o livro adota: f_2 é a derivada parcial de f em relação a y. encontrei em a) 12 (blz!!!) mas em b) 0 . E a resposta do livro é b) -3 exercício 59) Louis Leithold (vol. 2 ) p. 970 Abraço. " O muito estudar é enfado para a carne" (Rei Salomão) Encontre o que procura com mais eficiência! Instale já a Barra de Ferramentas com Windows Desktop Search GRÁTIS! Experimente já! Flickr agora em português. Você clica, todo mundo vê. Saiba mais. Conheça o Windows Live Spaces, a rede de relacionamentos conectada ao Messenger! Crie já o seu! Flickr agora em português. Você clica, todo mundo vê. Saiba mais. Flickr agora em português. Você clica, todo mundo vê. Saiba mais. _________________________________________________________________ Encontre o que procura com mais eficiência! Instale já a Barra de Ferramentas com Windows Desktop Search GRÁTIS! http://desktop.msn.com.br/