Olá, Ralph,

 

O arquivo GeoGebra (“Hexagons.ggb”) foi bloqueado pelo sistema que administra 
esta Lista, em face da possibilidade de vírus (por tratar-se de um arquivo 
executável).

 

Peço, então, que envie o respectivo arquivo diretamente para o meu e-mail.

 

Prometo (como sempre…) tentar encontrar uma solução ainda mais complicada do 
que as já disponíveis na literatura e (para compensar!) válida somente para uns 
poucos casos particulares.

 

Sds.,

  _____  

Albert Bouskelá

 <mailto:bousk...@gmail.com> bousk...@gmail.com

 

De: owner-ob...@mat.puc-rio.br [mailto:owner-ob...@mat.puc-rio.br] Em nome de 
Ralph Teixeira
Enviada em: segunda-feira, 8 de junho de 2015 21:03
Para: obm-l@mat.puc-rio.br
Assunto: [obm-l] {Filename?} Problema Interessante de Geometria

 

Ola a todos.

 

Eu e minha aluna de Mestrado Fabiola encontramos um problema bem facil de 
enunciar que esclareceria um ponto da dissertacao de mestrado dela... No 
entanto, a gente soh encontrou umas solucoes bem complicadas na literatura, e 
mesmo assim parecem ser apenas para alguns casos particulares simetricos... 
Entao coloco aqui -- quem tiver uma solucao elegante ganha um agradecimento na 
dissertacao! :) :)

 

(Eu pensei ateh em sugerir esse problema para alguma OBM, mas como ainda nao 
sei resolver e acabei mostrando a alguns alunos, vou soltar logo ele aqui.)

 

"Sao dados dois poligonos convexos P1P2...Pn e Q1Q2...Qn (onde n>4) contendo a 
origem O em seu interior. Sabe-se que:

-- Eles tem lados respectivamente paralelos (isto eh, PiP_{i+1} // QiQ_{i+1} 
para i=1,2,...,n, indices modulo n);

-- Triangulos com vertice em O e um lado do poligono tem areas respectivamente 
iguais (isto eh, Area(OPiP_{i+1}) = Area(OQiQ_{i+1}) para i=1,2,...n, indices 
modulo n).

Pergunta-se: os poligonos tem que ser congruentes?"

 

Quem quiser brincar, vide o Geogebra anexo que ilustra o caso n=6 (fiz uma 
copia de Q longe da origem para facilitar a visualizacao -- a "origem" para Q 
eh O_1). Pode brincar como quiser com os Q's, e com P_1 -- os outros pontos sao 
calculados para satisfazer as condicoes acima... Mas alguem consegue fazer o 
poligono P fechar (isto eh, P1=P7) sem que ele seja congruente ao Q (mas 
mantendo ambos convexos e mantendo a origem O dentro de P?)

 

Nota: se n=4, dois paralelogramos distintos de mesma area centrados na origem 
sao contra-exemplo!

 

Abraco, Ralph.


-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a