Pra N tem raizes reais a^2 - 4a^2 + 24 < 0 a>2sqrt2 Podemos admitir a real, caso contrario, a equacao obviamente nao possui raízes reais. Devemos provar que nao existe raiz de a menor que 2sqrt2 Se f(X)=x^3-6x-6 Como f(2sqrt2).f(-oo)>0 f(X) tem um numero par de raizes entre ]-oo,2sqrt2] Ou seja, 0 ou 2 solucoes. Agora, como f(2sqrt2)f(2.03sqrt2)<0 temos uma ou 3 solucoes nesse intervalo. Obviamente temos uma solucao visto que a soma das solucoes e igual a 0. Chamando essa solucao de x3 X1+x2=-x3 X1.x2=6/x3 Entao para x1 e x2 nao serem reais temos que (x3)^2 -24/x3 < 0 => x3<24^(1/3) de fato, pois x3 esta entre 2Sqrt2 e 2.03sqrt2. Temos que x3 é a unica soluçao real da equacao e eh maior que 2sqrt2.
Sent from my iPad > On Oct 14, 2015, at 07:57, marcone augusto araújo borges > <marconeborge...@hotmail.com> wrote: > > Seja a um número real tal que a^3 = 6(a+1).Mostre que a equação > x^2 + ax+ a^2 - 6 = 0 não tem raízes reais. > > -- > Esta mensagem foi verificada pelo sistema de antivírus e > acredita-se estar livre de perigo. -- Esta mensagem foi verificada pelo sistema de antiv�rus e acredita-se estar livre de perigo.