Bom dia!
Recebi esse problema hoje: 615 + x^2 = 2^y., para x,y inteiros Não saberia
fazer, como não soube resolver esse, acima. Mas devido a solução do colega
Esdras, pensei:"já vi algo parecido".
Basta restringir y aos pares.
Se y é ímpar x^2=2 mod3, absurdo então y é par. Logo y=2a, com a inteiro.
(2^a + x) (2^a-x)= 615= 1*615=3*205=5*123=15*41 e como a soma dos fatores
necessita ser uma potência de 2, só serve para 123 e 5.
Logo 2^y=64 e y=6 e x= 59 ou x=-59.
Uma resolução levou a outra, não pelo talento nato, mas por aprendizado, o
que é válido.
Teve uma feita que estava tentando provar que o triângulo órtico, era o
triângulo de menor perímetro que poderia ser inscrito em um triângulo
acutângulo. Tentei por geometria analítica e só levando tinta. Tinha
desistido. Quando me deparei com um problema que não consegui resolver, mas
que tinha um caminho para a solução. Quando vi o rebatimento feito, pensei
está resolvido. O curioso, é que, quando desisti, pesquisei na internet e
não achei nada. Depois que consegui resolver, achei duas soluções, e
infelizmente e como esperado, a minha não era novidade, era clássica.
Obrigado, Esdras! Sem a sua solução, certamente, não teria resolvido essa
última questão.

Cordialmente,
PJMS

Em sex., 24 de jul. de 2020 às 12:19, Prof. Douglas Oliveira <
profdouglaso.del...@gmail.com> escreveu:

> Obrigado Claudio e Esdras, fatoração show
>
>
> Em sex., 24 de jul. de 2020 às 11:12, Esdras Muniz <
> esdrasmunizm...@gmail.com> escreveu:
>
>> Se for solução inteira positiva, acho que só tem 3 e 4. Vc supõe spdg x
>> maior ou igual a y, vê que y=1 não tem solução e x=y tb não. Daí, x>y>1.
>> Fatorando a expressão, fica: (xy-8-(x-y))(xy-8+(x-y))=15. Como
>> (xy-8-(x-y))>(xy-8+(x-y))>-2. Temos que ou (xy-8-(x-y))=1 e (xy-8+(x-y))=15,
>> o que não tem soluções inteiras positivas, ou (xy-8-(x-y))=3 e 
>> (xy-8+(x-y))=5,
>> cujas únicas soluções inteiras são x=4 e y=3.
>>
>> Em sex, 24 de jul de 2020 10:36, Claudio Buffara <
>> claudio.buff...@gmail.com> escreveu:
>>
>>> Pelo que entendi, a solução é a porção dessa curva algébrica situada no
>>> 1o quadrante.
>>> Dá pra fazer isso no Wolfram Alpha, com o comando plot (x*y-7)^2 - x^2 -
>>> y^2 = 0.
>>>
>>> []s,
>>> Claudio.
>>>
>>> On Fri, Jul 24, 2020 at 9:58 AM Prof. Douglas Oliveira <
>>> profdouglaso.del...@gmail.com> wrote:
>>>
>>>> Preciso de ajuda para encontrar todas as soluções não negativas da
>>>> equação
>>>> (xy-7)^2=x^2+y^2.
>>>>
>>>> Desde já agradeço a ajuda
>>>> Douglas Oliveira
>>>>
>>>> --
>>>> Esta mensagem foi verificada pelo sistema de antivírus e
>>>> acredita-se estar livre de perigo.
>>>
>>>
>>> --
>>> Esta mensagem foi verificada pelo sistema de antivírus e
>>> acredita-se estar livre de perigo.
>>
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

Responder a