Use o fato de que toda função meromorfica  em C união {inf} é da forma 
f(z)/g(z), onde f, g são polinômios.
Daí, como a função do enunciado é inteira, g(z) é constante (e não nula).
E como f(z) rende a inf quando z tende a inf, f é um polinômio não constante.

Enviado do meu iPhone

> Em 14 de jul. de 2022, à(s) 16:41, Artur Costa Steiner 
> <artur.costa.stei...@gmail.com> escreveu:
> 
> Oi amigos!
> 
> Um teorema da Análise Complexa diz que, se f é inteira e lim z —> oo f(z) 
> = oo, então f é um polinômio (claramente não constante). Nos livros em 
> que estudei isso era dado como exercício, de modo que nunca vi a 
> demonstração deste teorema. Eu consegui dar duas demonstrações para ele, 
> sendo que uma delas sei que está certa A outra acho que também está certa, 
> mas a primeira me parece bem melhor. 
> 
> Alguém aqui pode dar uma prova, para comparar com a minha? Se houver 
> interesse (Análise Complexa não costuma aparecer aqui) eu dou as minhas. 
> 
> Obrigado
> 
> Artur
> 
> 
> 
> -- 
> Esta mensagem foi verificada pelo sistema de antivírus e 
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.


=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================

Responder a