Achei isso aqui interessante: https://www.panix.com/~murphy/bday.html

[]s,
Claudio.

On Tue, Nov 8, 2022 at 9:56 PM Ralph Costa Teixeira <ralp...@gmail.com>
wrote:

> Maaaais ou menos... O que faltou foi a hipótese exata da distribuição de
> probabilidade dos aniversários.
>
> Se a gente supõe que cada mês tem os mesmos 1/12 de chance para cada
> aluno, e que os meses são independentes entre si, sim,
> p=12/12^2=1/12~8.33333%.
>
> Agora, talvez um modelo um pouco mais preciso seria supor que cada DIA do
> ano tem a mesma probabilidade (e que são independentes entre si). Isto
> afeta um tiquinho a resposta, porque cada mes têm um número ligeiramente
> diferente de dias! Ignorando anos bissextos (huh!?!), temos:
> -- 7 meses com 31 dias;
> -- 4 meses com 30 dias;
> -- 1 mes com 28 dias;
> Portanto, seria um pouco mais "realista" usar:
> p=(7*31^2+4*30^2+28^2)/(365^2) ~ 8.34003%
>
> Eu ponho esse "realista" bem entre aspas; primeiro, porque eu ignorei
> anos bissextos (fique à vontade para inclui-los e refazer a conta :D :D
> :D); mas a hipótese de que todos os dias do ano tem a mesma probabilidade
> não é tão realista quanto parece! Existe uma certa "concentração" de
> aniversários em determinadas épocas do ano... mas, sem dados exatos sobre
> como seja a tal concentração, o melhor que podemos fazer seria uma das
> estimativas acima.
>
> Ainda tem um segundo problema sutil: *mesmo que todos os dias tivessem a
> mesma probabilidade, talvez n*ã*o seja 100% correto supor que os
> aniversários dos alunos da mesma turma do CMBel sejam independentes*! Por
> exemplo, existe uma probabilidade maior que zero de ter gêmeos numa mesma
> turma (comum uma família com gêmeos colocá-los na mesma escola), o que
> afeta a independência dos dados, e muda um pouquinho aqueles 8.3% (para
> cima)... sem uma estimativa desta probabilidade de ter gêmeos na mesma
> turma, não conseguimos calcular a resposta "exata".
>
> Isto tudo dito... em quase qualquer problema de probabilidade a gente vai
> ter que fazer ALGUMA hipótese simplificadora para poder sair do lugar.
> Assim, eu diria que o problema não está 100% bem posto, mas não acho
> ridículo fazer uma das hipóteses simplificadoras acima que levam a 8.33333%
> ou 8.34003% (e a diferença me parece tão pequena que eu aceitaria ambas as
> respostas como corretas, desde que as hipóteses utilizadas em cada caso
> fossem citadas).
>
> Abraço, Ralph.
>
> On Tue, Nov 8, 2022 at 3:07 PM Luis Paulo <luispv...@yahoo.com.br> wrote:
>
>> Prezados, o problema abaixo está bem posto?
>>
>> Uma turma do CMBel tem 25 alunos. Escolhendo-se aleatoriamente dois
>> estudantes dessa turma, qual a probabilidade de eles façam aniversário no
>> mesmo mês?
>>
>> A resposta da banca: 1/12.
>>
>>
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a