E daí?

Em qui., 28 de dez. de 2023 18:42, Anderson Torres <
torres.anderson...@gmail.com> escreveu:

> Isso não é da OBM mas da IMO
>
> Em qui, 28 de dez de 2023 16:35, Pedro José <petroc...@gmail.com>
> escreveu:
>
>> Boa tarde!
>> Com referência a esse problema criei uma conjectura, não consegui provar
>> com a pretensão de abranger todas as soluções da equação:
>>
>> (a^2+b^2)/(ab+1)= k, com a,b,k Naturais e a>1, b>1 e k>1 Fiz essa
>> restrição para retirar as soluções triviais.
>> E SPG considerei a>b, já que a=b só ocorre para a=b=1, que está fora pela
>> restrição acima e por ser uma equação simétrica em relação à a e b.
>> O problema era provar que k era um quadrado perfeito.
>> Gostaria de saber se alguém teria conhecimento da resolução em si do
>> problema, i.e., quais ternos (a*,b*,k*) são solução da equação.
>>
>
> Sim, o próprio método de resolução por descenso provê um método de
> listagem das soluções.
>
> Caso ninguém tenha resolvido a equação, ainda, gostaria como faço para dar
>> divulgação da minha conjectura, onde tenho a pretenção de ter encontrado
>> todas as soluções possíveis para a equação em epígrafe, no Universo dos
>> Naturais, com a restrição a>1, b>1 e K>1.
>>
>> Agradeço quem puder me orientar.
>>
>> Cordialmente,
>> PJMS
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a